

Recent heavy-ion results from STAR

Xianglei Zhu, 朱相雷 Tsinghua University 2021.8.17

中国物理学会高能物理分会 HIGH ENERGY PHYSICS BRANCH OF CPS

第十三届全国粒子物理学术会议 (2021)

Outline

STAR, Phys. Rev. Lett. 126 (2021) 092301

- Heavy flavor
 - ➤ Quark-gluon plasma properties
- Light flavor
 - ➤ QCD medium properties, phase transition
- Hypernuclei and two-particle correlations
 - > Y-Y/Y-N interactions, EOS at high density
- Global polarization
 - ➤ Vorticity
- STAR beyond 2022+

STAR detector at RHIC

- Event Plane Detector for reaction plane and centrality determination and triggering
- End-cap Time-of-Flight for forward PID
- Inner TPC for increasing TPC acceptance ~1.5 in η and improving dE/dx resolution

The STAR fixed-target (FXT) setup

- 250 μm foil
- 2 cm below nominal beam axis
- 2 m from center of STAR

Datasets and STAR BES-II

- Collision energies: 200 7.7 GeV, μ_B : 20 420 MeV
- Access with FXT to high baryon density regions with μ_B up to 720 MeV

STAR BES-II, FXT data taking

100	13.7(FXT)	276	0.5 days	50 M (50 M)	Run-21
70	11.5(FXT)	316	0.5 days	50 M (50 M)	Run-21
44.5	9.2(FXT)	373	0.5 days	50 M (50 M)	Run-21
3.85	3.0(FXT)	721	3.5 weeks	2.3 B (2.3 B)	Run-21
26.5	7.2 (FXT)	443	2 day	155 + 317 M	Run-18/20
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Run-18
4.59	3.2 (FXT)	699	2.0 days	100 M (110 M) 100 M (200 M)	Run-19
$7.3 \\ 5.75$	3.9 (FXT) 3.5 (FXT)	633 666	1.1 days 0.9 days	100 M (117 M) 100 M (116 M)	Run-20 Run-20
9.8	4.5 (FXT)	589	0.9 days	100 M (108 M)	Run-20
13.5	5.2 (FXT)	541	1.0 day	100 M (103 M)	Run-20
19.5	6.2 (FXT)	487	1.4 days	100 M (118 M)	Run-20
31.2	7.7 (FXT)	420	0.5+1.1 days	100 M (50 M+112 M)	Run-19+20
 (GeV/nucleon)	(GeV)	(MeV)	Tour Time	Requested (Recorded)	Collected
Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Number Events	Date

STAR BES-II, Collider mode data taking

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Number Events	Date
(GeV/nucleon)	(GeV)	(MeV)	Requested (Recorded)	Collected
13.5	27	156	(560 M)	Run-18
9.8	19.6	206	400 M (582 M)	Run-19
7.3	14.6	262	300 M (324 M)	Run-19
5.75	11.5	316	230 M (235 M)	Run-20
4.59	9.2	373	$160 \text{ M} (162 \text{ M})^1$	Run-20+20b
3.85	7.7	420	100M (100M)	Run-21
8.65	17.3	230	250M (250M)	Run-21

Successful completion of BES-II and FXT data taking, thanks to excellent RHIC performance!

Energy dependence of HF electron v₂

- HF flow at lower energies?
- High statistics data at 54.4 and 27 GeV, taken in 2017 and 2018 respectively

- Similar v₂ for HF electrons at 200 and 54.4 GeV, hint of smaller v₂ at 27 GeV
- Models fail describing data at low p_T (< 1.4 GeV/c) for 54.4 GeV

Energy dependence of J/ψ suppression

- J/ψ suppression: interplay of color screening and regeneration
- 10x more data at 54.4 GeV than for previous measurements at 62.4 and 39 GeV

• Similar J/ ψ R_{AA} values between 54.4 and 200 GeV

K. Shen, SQM2021 & poster session

• Will help constrain the contributions from color screening and regeneration

Strangeness production in BES-I

baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out

J. Randrup et al., PRC 74, 047901 (2006)

Net baryon density ρ_B (fm⁻³)

BES-I strange hadron to pion ratios vs $dN_{ch}/d\eta$

STAR, PRC96, 044904, 2017 STAR, PRC102, 034909, 2020 ALICE, PRC88, 044910, 2013

Y. Huang, SQM2021

$$\frac{dn}{dy} = \frac{\sqrt{M(1+\sinh^2 y)}}{\sqrt{1+M\sinh^2 y}} \frac{dn}{d\eta},$$
where $M = 1 + m^2/p_t^2$

$$dN_{ch}/d\eta = \sum dN_{ch}/d\eta (k^{\pm}, \pi^{\pm}, p, \bar{p})$$

$$dN_{ch}/d\eta (\eta = 0) \sim dN_{ch}/d\eta (|\eta| < 0.5)$$

- The ratios at different energies, centralities, and systems mainly depend on charged hadrons multiplicity, except for Λ and ϕ
- The ratios saturate at large charged hadrons multiplicity

Strangeness production at 54.4 GeV

Y. Huang, SQM2021

- R_{CP} suppression at high p_T : parton energy loss
- R_{CP} separation between baryons and mesons at intermediate p_T : strange hadrons are from coalescence hadronization
- Ω/ϕ ratio enhancement at intermediate p_T : Ω, ϕ formation through strange quark recombination

ϕ and Ξ production at 3 GeV (FXT)

- Low energies and/or small systems: local strangeness conservation
- Canonical instead of grand canonical ensemble (GCE) describes statistical production

STAR, arXiv: 2108.00924

$$\phi(s\overline{s}), S = 0$$
 $K^{-}(s\overline{u}), S = -1$
 $\Xi^{-}(dss), S = -2$

Statistical models:

A. Andronic et al, Nucl. Phys. A 772, 167; J. Cleymans et al, Phys. Lett. B

J. Cleymans et al, Phys. Lett. E 603, 146

Yingjie Zhou's talk

• ϕ/K^- and ϕ/Ξ^- measurements at 3 GeV strongly disfavor GCE

Strange hadron flow at 54.4 and 27 GeV

• Strange hadrons: Small hadronic cross-section. Partonic vs hadronic contribution to flow

Shusu Shi's talk tomorrow morning

 NCQ scaling holds for strange hadrons at 54.4 and 27 GeV: dominance of partonic collectivity

Collective flow in Au+Au $\sqrt{s_{NN}}$ =4.5 GeV (FXT)

- First STAR FXT paper based on the 2015 FXT test run (1.3 M events taken within half an hour)
- Flow results consistent with world data within uncertainties

Collectivity at 3 GeV (FXT)

- NCQ scaling holds for energies from 200 down to 7.7 GeV collisions: partonic collectivity
- v₂ values are negative and NCQ scaling breaks down at 3 GeV: medium less dominated by partonic interactions

Collectivity at 3 GeV (FXT)

Shusu Shi's talk tomorrow morning

- UrQMD cascade mode fails to describe data
- Need baryonic mean field interactions to generate trends seen in data

Medium dominated by baryonic interactions and nuclear EoS

Light nuclei production at 3 GeV (FXT)

- $> -1 < y_{cm} < 0$: obtained by p_T spectra; $0 < y_{cm} < 1$: reflection by measured range
- > Systematic uncertainties are evaluated by various track cuts and different fit functions
- > dN/dy of particles shows strong rapidity and centrality dependence

Light nuclei production at 3 GeV (FXT)

Hui Liu, poster

- Choose pion, kaon, inclusive proton, deuteron and triton for combined blast-wave fit at BES-I
- ➤ T_{kin} shows a stronger energy dependence from 7.7 to 39 GeV when light nuclei are considered into combined fit, especially in peripheral collisions
- ➤ FXT 3 GeV shows different trend compared to BES-I Au+Au collisions, indicate a different medium equation of state (EoS) at 3 GeV

Phys. Rev. C 96 (2017) 44904

Phys. Rev. C 79 (2009) 34909

Hypernuclei production at 3 GeV (FXT)

• Lifetime, yield, flow of hypernuclei: important to understand Y-N interactions and hyperon contribution to nuclear EoS

Models: J. Steinheimer et al, Phys. Lett. B. 714,85; A. Andronic et al, Phys. Lett. B 697, 203 (Private communincations)

ALICE: Phys. Lett. B 754, 360

$$^{3}_{\Lambda}$$
H: $\tau = 232.1 \pm 29.2(stat) \pm 36.7(syst)[ps]$
 $^{4}_{\Lambda}$ H: $\tau = 218.3 \pm 7.5(stat) \pm 11.8(syst)[ps]$

• ${}^{4}_{\Lambda}$ H lifetime measurement most precise to date!

Xiujun Li, poster

• Thermal (with canonical ensemble) and coalescence model calculations describe ${}^{3}_{\Lambda}$ H yields, but lower than ${}^{4}_{\Lambda}$ H yield

Hypernuclei production: rapidity dependence

- Difference in rapidity distribution for ${}^{4}_{\Lambda}H$ between central and mid-central collisions
- Could be contributions from spectator reactions in ${}^4_{\Lambda}$ H production in non-central collisions

Light nuclei directed flow at 3 GeV (FXT)

- Hadronic model JAM reproduces light nuclei v₁ at 3 GeV
- Different scaling behavior at low and high collision energies change of dominant interactions

Hypernuclei directed flow at 3 GeV (FXT)

Chenlu Hu, QPT2021

- Directed flow of hypernuclei suggests mass number scaling
- Indicates a coalescence production of hypernuclei

Femtoscopy: short-range correlation

- Study the spatial and temporal extent of the emission source
 - ➤ Quantum statistics; final-state interactions
- Y-Y and Y-N interactions are essential inputs for understanding EoS of neutron stars
- Observable: two-particle correlation

$$C(q) = \frac{A(q)}{B(q)}$$

q – relative momentum between two particles

A(q) – signal correlation from same events

B(q) – background correlation from mixed events

200 GeV Au+Au: $p-\Xi^-$ Correlation

$$C_{SL}(k^*) = \frac{C(k^*)_{40-80\%}}{C(k^*)_{0-40\%}}$$

- First measurement of p- Ξ correlation in Au+Au
- Stronger correlation in peripheral than central collisions (system size)
- Peripheral/central: attractive strong interaction at k* < 0.1 GeV/c beyond Coulomb interaction and background
- Consistent with lattice-QCD calculation

200 GeV Au+Au: Ξ-Ξ correlation

- First measurement of Ξ - Ξ correlation in Au+Au collisions
- Indication of negative correlation at small Q_{inv}
- Need to understand feed-down contribution and Coulomb effect

M. Isshiki, SQM2021

A global polarization

- Magnetic field $\rightarrow \Lambda$ and anti- Λ align in opposite directions
- Fluid vorticity $\rightarrow \Lambda$ and anti- Λ align in same direction

Λ P_H at 7.2 GeV Au+Au (FXT)

- First measurement at $\sqrt{s_{NN}} = 7.2$ GeV Au+Au (FXT)
- Positive polarization for Λ

$$> 0.6 < y + |y_{\text{beam}}| < 1.8$$

- Follow the world data trend
 - ➤ Increasing polarization with decreasing collision energy

K. Okubo, SQM2021

Rapidity dependence of ΛP_H

Extend measurements to Ξ and Ω

STAR: PRL 126, 162301, 2021

- First measurement of Ξ and Ω global polarization in 200 GeV Au+Au collisions
 - \triangleright Important addition to Λ results
- Within 20-80%, |y| < 1, $p_T > 0.5 \text{ GeV/}c$

$$> < P_{\Lambda} > (\%) = 0.24 \pm 0.03(\text{stat}) \pm 0.03(\text{syst})$$

$$> < P_{\Xi} > (\%) = 0.47 \pm 0.10(\text{stat}) \pm 0.23(\text{syst})$$

$$> < P_{\Omega} > (\%) = 1.11 \pm 0.87 \text{(stat)} \pm 1.97 \text{(syst)}$$

Consistent with picture of system fluid vorticity

STAR Beyond BES-II (2022+)

• The **forward upgrade** includes

Trackers (silicon microstrip tracker & small-strip Thin Gap Chamber) and

Calorimeters (ECAL & HCAL)

dedicated to study nuclear structure and QGP

Forward-rapidity 2.8<η<4.2

A+A

Beam

Full Energy AuAu (2023/25)

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η ~4
- Longitudinal decorrelation up to η~4
- Global Lambda Polarization
- strong rapidity dependence

$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$ & $\mathbf{p}^{\uparrow}+\mathbf{A}$

Beam:

500 GeV: p+p

200 GeV: p+p and p+A

Physics Topics:

pp:

- TMD measurements at high x
 - o transversity → tensor charge
 - o Sivers through DY, direct γ and tagged jets

pA:

- Gluon PDFs for nuclei
- R_{pA} for direct photons & DY, and hadrons
- Test of Saturation predictions through di-hadrons, γ-Jets, di-jets
- → all measurement are critical to the scientific success of EIC to test universality and factorization

Observables:

- inclusive and di-jets
- ☐ hadrons in jets
- ☐ Lambda's
- correlations mid-forward & forwardforward rapidity

Requirements from Physics:

- □ good e/h separation
- \square hadrons, photon, π^0 identification

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/√E+10%	
Tracking	charge separation	$0.2 < p_T < 2 \text{ GeV/c}$
	photon suppression	with 20-30% $1/p_T$

FY2022: 500 GeV polarized pp run

All other data taking in parallel to sPHENIX data taking campaign: AA, pA, pp

Chi Yang, QPT2021

Summary & outlook

Topics (partly) covered:

- Heavy flavor
- Light flavor
- Light nuclei and hypernuclei
- Two-particle correlations
- Vorticity

Topics not covered: CME/fluctuations/jet/EM probes/small system/spin...

Coming up soon: Isobar, BES-II, O+O, ...

Look forward to more exciting results from STAR!