

Light and strange hadron production and anisotropic flow measurement in Au + Au collisions at $\sqrt{s_{NN}} = 3$ GeV from STAR experiment

Yingjie Zhou

for the STAR Collaboration Central China Normal University

Aug 17, 2021

Ref: M. Abdallah et al. (STAR Collaboration) 2108.00908 M. Abdallah et al. (STAR Collaboration) 2108.00924

第十三届全国粒子物理学术会议 (2021)

Motivation

- STAR Fixed Target (FXT)
- yield ratios
- v_1, v_2
- Summary

Outline

• Results of light and strange hadron production yields

• Results of light and strange hadron anisotropic flow

Introduction

• RHIC BES cover the intermediate baryon density region - Look for onset of de-confinement, phase boundary and locate critical point

• STAR FXT mode $\sqrt{s_{NN}} = (3.0 - 13.7) \text{ GeV}$

- High baryon chemical potential μ_B (~276 MeV up to ~ 720 MeV) allows us to study properties of high baryon density matter

Particle production

- Understand medium properties and different particle production mechanisms

Collective flow

- Study properties of the produced medium

FXT setup at STAR

In C.M. frame, $y_{target} = -1.045$ for the 3GeV collisions

- Target was installed at the edge of TPC • 260M events for Au+Au FXT at $\sqrt{s_{NN}} = 3 \text{ GeV}$

PID at STAR FXT

TPC

resolutions in FXT mode

TOF

• TPC (dE/dx) and TOF (β) for pion, kaon and proton particle identification • On average, "longer tracks" for FXT events than for collider events, better

Particle reconstruction

• ϕ mesons are reconstructed in K^+K^- channel - Background is obtained by using mixed-event technique • K_{s}^{0} , Λ and Ξ^{-} are reconstructed in $\pi^{+}\pi^{-}$, $p\pi^{-}$ and $\Lambda\pi^{-}$ channels respectively using KF particle package, good purity and efficiency is achieved - Background is obtained by rotating daughter tracks

4

Counts 5

 \mathbf{b}

for $\pi, K, p, K_S^0, \Lambda, \phi$ and Ξ^- - Good mid-rapidity coverage

arXiv:2108.00908v1

Particle acceptance

• The acceptance plot measured from STAR at 3 GeV (TPC and TOF)

Motivation

• STAR Fixed Target (FXT)

• Results of light and strange hadron production yields • yield ratios

• v_1, v_2

Summary

Outline

• Results of light and strange hadron anisotropic flow

Beam energy dependence of strangeness production

- K^-/K^+ ratio shows importance of K^+ production in association with the Λ $(N+N \rightarrow N+\Lambda+K)$
- K^+/π^+ ratio proposed by NA49 as a possible signal of onset of deconfinement. Statistical model describes the data
- Results at $\sqrt{s_{NN}} = 3.0$ GeV follow the world trend

 K^-/K^+ and K^+/π^+ ratio

KaoS, J. Phys. G 28, 2011 (2002) E866/E917, Phys. Lett. B490, 53 (2000) NA49, Phys. Rev. C 77, 024903 (2008) NA49, Phys. Rev. C 66, 054902 (2002) STAR, Phys. Rev. C 96, 044904 (2017) E866/E917, Phys. Lett. B476, 1 (2000) A. Andronic et al., Phys. Lett. B, 673, 142 (2009)

ϕ/K^- and ϕ/Ξ^- ratio

arXiv:2108.00924v1

• Grand canonical ensemble (GCE) and canonical ensemble (CE) calculations are quite different at low energy

• ϕ/K^- and ϕ/Ξ^- ratios favor CE treatment for strangeness and a small strangeness correlation length parameter, r_c , in 0–10% central Au+Au collisions

• The transport models including the resonance decays can reasonably describe both our measured ϕ/K^- ratio result at this energy and the trend of ϕ/Ξ^- at lower energies

• Suggest a significant change in the strangeness production at $\sqrt{s_{\rm NN}}$ = 3 GeV compared to higher collision energies, indicating a change of EoS

Motivation

- STAR Fixed Target (FXT)
- yield ratios
- v_1, v_2

Summary

Outline

• Results of light and strange hadron production yields

• Results of light and strange hadron anisotropic flow

Rapidity dependence of v_1 and v_2

- the data indicating hadronic dof dominates

arXiv:2108.00908v1

• The strength of the rapidity dependence of v_1 is proportional to the hadron mass • All of the measured mid-rapidity ($|y| \le 0.5$) hadrons show negative values of v_2 • The JAM and UrQMD calculations with baryonic mean-field potential qualitatively describe

v₂ scaling properties

- different color dash line is the fit to data from 200 GeV - 7.7 GeV - consistent with the nature of partonic collectivity positive charged particles

arXiv:2108.00908v1

• The number of constituent quark (NCQ) scaling for v_2 holds down to 7.7 GeV Au+Au Collisions

• At 3 GeV, the measured v_2 for all particles are negative and the NCQ scaling breaks, especially for

Energy dependence of v_1 and v_2

arXiv:2108.00908v1

- Positive v_1 slope and negative v_2 for all measured particles in 3 GeV collisions. Opposite collective behaviors with that in high energy collisions
- Positive v_1 slope observed for kaons and ϕ -meson for the first time
- Results from JAM and UrQMD with baryonic meanfield potential qualitatively describe the measurement at 3GeV
- EoS dominated by the baryonic interactions at 3 GeV

- Light and strangeness production in Au+Au 3 GeV collisions
 - Particle production mechanism may differ from that at high energy
 - ϕ/K^- and ϕ/Ξ^- show strong effect of canonical suppression, indicating a change of EoS
- Collectivity measurements in Au+Au 3 GeV collisions
 - The EoS dominated by baryonic interactions
- → Hadronic interactions dominates the EOS in Au+Au collisions at 3 GeV!

Outlook

- Global thermal fit together with all other particles at 3 GeV on the way (T_{ch}, T_{kin}, μ_B)
- - Extract parameters of EOS
 - Analyze baryon correlation functions
 - Study di-electron pair productions in high baryon environment
 - Analyze hyper-nuclei production and collectivity
 - and more ...

Summary

• More than 2 billions events of 3 GeV Au+Au collisions have been collected. That will allow us to

Backup

