Some remarks on Y(4260)

漆红荣(Hongrong Qi) Tsinghua University

qihongrong@tsinghua.edu.cn

[1] PRL 95, 142001 (2005).[4] PRD 86, 051102(R) (2012).

[2] PRD 74, 091104(R) (2006). [5] PRL 110, 252002 (2013). [3] PRL 99, 182004 (2007).

Discovery of $Y(4260) \rightarrow \pi^+\pi^- I/\psi$ Belle **CLEO BABAR** 3850606-001 Events / 20 MeV/c² 80 80 80 8 ψ(2S) 10² 40 MeV/c² **Belle** (qd) (\h/(_\mu_ 10 Events / 42 44 46 48 5 52 <u>ם(א</u> 38 4.5 4.2 4.4 4.6 4.8 5.5 4.2 3.8 4.4 4.6 4.8 5.2 5 $m(\pi^+\pi^-J/\psi)$ (GeV/c²) M ($\pi^+\pi^-J/\psi$) (GeV/c²) M=4258.6+8.3+12.1 MeV '=134.1 \pm 16.4 \pm 5.5 MeV 80 $M = 4245 \pm 5 \pm 4$ MeV **Belle 2013** 80 70 140 Γ =114 $^{+16}_{-15}\pm$ 7 MeV 70 **BABAR 2012** Events / (0.020 GeV/c²) 60 כ(dq) (ψ/L⁻π⁻J/ψ) 60 120 **Belle 2007** (MeV) 50 50 **CLEO 2006** 100 40 40 **BABAR 2005** 30 30 80 20 60 10 4.8 0 4250 4300 4350 4.2 4.6 5.2 3.8 4.4 5 5.4 4.2 4.4 4.6 4.8 5 5.2 5.4 E_{cm} (GeV) $m(J/\psi\pi^+\pi^-)(GeV/c^2)$ (MeV/c^2) Μ

Average [PDG 2014] : M = 4251 \pm 9 MeV, Γ = 120 \pm 12 MeV

There seem a few bumps in the updated BABAR and Belle data ! Improved measurements are needed.

Intriguing Y(4260)

Have attracted considerable attention!

 Such 1⁻⁻ states expected up to 4.4 GeV are generally well-established 1S, 2S, 1D, 3S, 2D and 4S.

Mass

 No enough unassigned vector states for Y(4260) in charmonium spectrum

Green: predicted and discovered Red: unpredicted but discovered

Intriguing Y(4260)

- No open charm process is significantly observed (before 2017).
- If taking Y(4260) as a charmonium state, it violates OZI rule.

Intriguing Y(4260)

- In 2012, Ref[1] predicted that Y(4260) has a sizable coupling to $\omega \chi_{c0}$, and is taken as a $c\bar{c}$ state. Meanwhile, they gave out $\Gamma_{e^+e^-} = 23.30 \pm 3.55$ eV.
- It is as expected that BESIII observed a resonant structure (>9 σ) in M($\omega \chi_{c0}$), with mass of 4230 \pm 8 \pm 6 MeV and width of 38 \pm 12 \pm 2 MeV [2].

Incompatible! Average [PDG 2014] : $M = 4251 \pm 9$ MeV, $\Gamma = 120 \pm 12$ MeV

[1] arXiv:1206.6911, PRD 92, 014020 (2015)[2] PRL114, 092003 (2015)

√s (GeV)

In 2012, Ref[1] predicted that Y(4260) has a sizable coupling to $\omega \chi_{c0}$, and is taken as a $c\bar{c}$ state. Meanwhile, they gave out $\Gamma_{e^+e^-} = 23.30 \pm 3.55$ eV.

It is as expected that BESIII observed a resonant structure (>9 σ) in M($\omega \chi_{c0}$), with mass of 4230 \pm 8 \pm 6 MeV and width of 38 \pm 12 \pm 2 MeV [2].

Incompatible!

Average [PDG 2014] : $M = 4251 \pm 9$ MeV, $\Gamma = 120 \pm 12$ MeV

[1] arXiv:1206.6911, PRD 92, 014020 (2015)[2] PRL114, 092003 (2015)

Intri	guir	ıg Y	(426	50)	More refined potential models
Ma	ass (and	width)		Ļ	has been growing !
	a rule on in R so	can	4	(4^3S_1)	• The screened potential model [1] recalculated the charmonium spectra. The $\psi(4^3S_1)'$ s mass is reduced from ~4415 to 4273 MeV, which reconciles to some extent the contradiction in "mass" but doesn't explain why Y(4260) in M($\omega\chi_{c0}$) is so narrow.
State	NR[2]	GI[2]	SC[1]	Exp [PDG	2014]
$\psi(3^3S_1)$	4072	4100	4022	4039 <u>+</u>	<u>+</u> 1 [1] PRD 79, 094004 (2009)
$\psi(2^3D_1)$	4142	4194	4089	4191 <u>+</u>	± 5 [2] PRD 72, 054026 (2005)
$\psi(4^3S_1)$	4406	4450	4273	4251 <u>+</u>	<u>+</u> 9
$\psi(3^3D_1)$			4317		

NR: nonrelativistic potential model, GI: Godfrey-Isgur model, SC: screened potential model.

Intrig	uing Y(4260)		notantial model [1] also
? Mass	(and width)		calculated the charmonia inc	e leptonic widths of cluded $\psi(4^3S_1)$ state.
🗙 OZI ru	ıle		However, Ref[2] gave out
🔀 Non i	n R scan		which the cou	$\frac{D}{D} = 23.30 \pm 3.55 \text{ eV, In}$ pling Y(4260) $\rightarrow \omega \chi_{c0}$ has
Lepto	nic width		been successf also take Y(42	ully predicted, and they 60) as a <i>cc̄</i> state.
state	Γ^0_{ee}	Γ_{ee}	$\Gamma_{ee}^{\mathrm{expt}}$	
$1^{3}S_{1}(3097)$	11.8	6.60	$5.55 \pm 0.14 \pm 0.02$	[1] PRD 79, 094004 (2009)
$2^{3}S_{1}(3686)$	4.29	2.40	2.33 ± 0.07	[2]PRD 92, 014020 (2015),
$3^{3}S_{1}(4039)$	2.53	1.42	0.86 ± 0.07	arXiv:1206.6911
$4^{3}S_{1}(4263)$	1.73	0.97		
$5^{3}S_{1}(4421)$	1.25	0.70	0.58 ± 0.07	$\Gamma_{\alpha\alpha}^{0}$ and $\Gamma_{\alpha\alpha}$ are without
$6^3S_1(4664)$	0.88	0.49		and with QCD corrections,
$1^{3}D_{1}(3775)$	0.055	0.031	0.259 ± 0.016	respectively (in unit of
$2^{3}D_{1}(4153)$	0.066	0.037	0.83 ± 0.07	keV).
$3^{3}D_{1}(4361)$	0.079	0.044		

ntriguin	g Y(42	260)
P Mass (and	width)	
OZI rule		•
Non in R sca	an	74
Leptonic wi	dth	
		/
$\Gamma_{e\bar{e}}$ (keV)	Pert	Nonpert
$\psi(1S)$	4.28	1.89
$\psi(2S)$	2.25	1.04
$\psi(3S)$	1.66	0.77
$\psi(4S)$	1.33	0.65
$\psi(1D)$	0.09	0.23
$\psi(2D)$	0.16	0.45

• The more refined relativistic potential model [1] also calculated the leptonic widths of charmonia included $\psi(4^3S_1)$ state.

However, Ref[2] gave out $\Gamma_{e^+e^-}[Y(4260)] = 23.30 \pm 3.55 \text{ eV}$, in

which the coupling Y(4260) $\rightarrow \omega \chi_{c0}$ has been successfully predicted, and they also take Y(4260) as a $c\bar{c}$ state.

[1] PRD 75, 074031 (2007)[2] PRD 92, 014020 (2015),arXiv:1206.6911

Pert and NonPert are short for perturbative and Nonperturbative, respectively.

Theoretical interpretations for $Y(4260) \rightarrow \pi \pi J/\psi$

- Excited charmonium
- Compact tetraquark
- *cc*-gluon hybrid
- Meson-meson molecule
- Threshold effect
- et al.
- * Main references are moved into backup.
 * These pictures come from Shuangshi Fang's talk.

Theoretical interpretations for $Y(4260) \rightarrow \pi \pi J/\psi$

- Exited *cc* state
- Tetraquark
- *cc*-gluon hybrid
- $D_1\overline{D}$ molecule
- Kinematic effect Loop-driven decay [1]

It can well explain why Y(4260) is not seen in OZI-allowed decays experimentally.

[1] Acta Phys. Pol. B. 51(8),1713 (2020)* Other references are moved into backup.

Theoretical interpretations for $Y(4260) \rightarrow \pi \pi I/\psi$

- Exited *cc* state
- Tetraquark
- *cc*-gluon hybrid
- $D_1 \overline{D}$ molecule
- et al.
- **P** Mass **X** OZI rule **X** Non R scan **X** $\Gamma_{e^+e^-}$ P Mass VOZI rule Non R scan $\Gamma_{e^+e^-}$ P Mass VOZI rule Non R scan $\mathbf{P} \Gamma_{e^+e^-}$ Mass VI rule Non R scan $\mathbf{P} \Gamma_{e^+e^-}$ Kinematic effect
 Mass
 OZI rule
 Non R scan J/ψ

 $\psi(4160)$

- All of resonant interpretations for Y(4260) is failed in R-scan distribution, instead, the interpretation of non-resonance enhancement can match the experiments (before 2017). Is that the truth?
 - * Main references are moved into backup.

November revolution for Y(4260)?

In spring of 2017, BESIII published a precise measurement of e⁺e⁻ → π⁺π⁻J/ψ cross sections at c.m. energies from 3.77 to 4.60 GeV using data samples with an integrated luminosity of 9 fb⁻¹.

2017

• The mass and width of lower state, called Y(4220), are well consistent with those observed in M($\omega \chi_{c0}$).

 $M = (4222.0 \pm 3.1 \pm 1.4) \text{ MeV}, \Gamma = (44.1 \pm 4.3 \pm 2.0) \text{MeV}$

November revolution for Y(4260)?

- In spring of 2017, BESIII also published a updated measurement of e⁺e⁻ → π⁺π⁻h_c cross sections at c.m. energies with improved significance with two resonant structures.
- The mass and width of the lower state are well consistent with those observed in $M(\omega\chi_{c0})$.

2017

M = (4218.4^{+5.5}_{-4.5} ± 0.9) MeV, Γ = (66.0^{+12.3}_{-8.3} ± 0.4) MeV

November revolution for Y(4260) ?

- What's more, the first open charm decays of Y(4260) is found !
- In 10th workshop of the France China Particle Physics Laboratory in spring of 2017, BESIII announced the heavy news. The results published afterwards in PRL 122, 102002 (2019)

2017

• The mass and width of the lower state are well consistent with those observed in $M(\omega\chi_{c0})$.

 $M = (4228.6 \pm 4.1 \pm 6.3) \text{ MeV}, \Gamma = (77.0 \pm 6.8 \pm 6.3) \text{MeV}$

November revolution for Y(4260) ?

- Since the narrow Y(4220) and the broad Y(4260) observed in the same process, i.e. $e^+e^- \rightarrow (\gamma_{ISR})\pi^+\pi^-J/\psi$, all of experiments should see the same scenario. It is reasonable to infer that the broad Y(4260) observed by BABAR, Belle, and CLEO is the combination of Y(4220) and Y(43xx).
- Perhaps for historical reasons, the new Y(4220) with lower mass and narrower width is also called Y(4260). Therefore, the label "Y(4260)" indicated the narrow Y(4220) in the following slides.
- In recent years, BESIII observed and/or searched for a number of Y(4260) decays, which is crucial to probe the nature of Y(4260). Because of this, Stephen & Tomasz & Daria called BESIII as "Y(4260) factory" [Rev.Mod.Phys. 90 (2018)1, 015003].

Observation of main Y(4260) decays

* Figures are from EPJC81(2021)83, and the reference for each measurement can also seen in EPJC81(2021)83.

THE EUROPEAN PHYSICAL JOURNAL C

On leptonic width of X(4260)

The leptonic decay width

$$\mathcal{L}_{\gamma X} = \frac{g_0}{M_X} X_{\mu\nu} F^{\mu\nu} \Longrightarrow \Gamma_{e^+e^-} = \frac{4\alpha}{3} \frac{g_0^2}{M_X}$$

The cross section for each decay

$$\sigma_{e^+e^- \to X(4260) \to f} = \frac{3\pi}{k^2} \boxed{\frac{\sqrt{s\Gamma_{ee}\Gamma_f}}{s - M_X^2 + i\sqrt{s}\Gamma_{tot}(s)}}_{X(4260) \to f} + \boxed{\sum_i \frac{c_i e^{i\phi_i}}{s - M_i^2 + i\sqrt{s}\Gamma_i}}_{Bkg \text{ for } \psi \to f} + \boxed{\tilde{c}}^2$$

On leptonic width of X(4260)

The propagator of X(4260)
$$\rightarrow f$$

$$\frac{1}{D_X(s)} = \frac{1}{s - M_X^2 + i\sqrt{s}\Gamma_{tot}(s)}$$

$$\Gamma_{tot}(s) = \Gamma_{J/\psi\pi\pi}(s) + \Gamma_{h_c\pi\pi}(s) + \Gamma_{D\bar{D}^*\pi}(s) + \Gamma_{\psi(2S)\pi\pi}(s) + \Gamma_{\omega\chi_{c0}}(s)$$

$$+ \Gamma_{J/\psi\eta}(s) + \Gamma_{D_s^*\bar{D}_s^*}(s) + \Gamma_{D\bar{D}}(s) + \Gamma_{D\bar{D}^*}(s) + \Gamma_{D^*\bar{D}^*}(s) + \Gamma_0$$
unknown decay width

two body decay width

$$\begin{split} \Gamma_{\omega\chi_{c0}}(s) &= g_{\omega\chi_{c0}}k_{\omega\chi_{c0}}, \quad \Gamma_{J/\psi\eta}(s) = g_{J/\psi\eta}k_{J/\psi\eta}^3, \quad \Gamma_{D_s^*\bar{D}_s^*}(s) = g_{D_s^*\bar{D}_s^*}k_{D_s^*\bar{D}_s^*}^3, \\ \Gamma_{D^+D^-}(s) &= g_{D^+D^-}k_{D^+D^-}^3, \quad \Gamma_{D^+D^{*-}}(s) = g_{D^+D^{*-}}k_{D^+D^{*-}}^3, \\ \Gamma_{D^{*+}D^{*-}}(s) &= g_{D^{*+}D^{*-}}k_{D^{*+}D^{*-}}^3. \end{split}$$
Flatte parameterization

Three-body decay width [PDG]

$$d\Gamma_f = \frac{1}{(2\pi)^5} \frac{1}{16M_X^2} |\mathcal{M}|^2 |p_1^*| |p_3| dm_{12} d\Omega_1^* d\Omega_3.$$

Combined fit

THE EUROPEAN PHYSICAL JOURNAL C

On leptonic width of X(4260)

Considering the isospin symmetry and heavy quark spin symmetry

$$\begin{split} &\Gamma_{J/\psi\pi\pi}(s) = \frac{3}{2}\Gamma_{J/\psi\pi^{+}\pi^{-}}(s), \ \Gamma_{h_{c}\pi\pi}(s) = \frac{3}{2}\Gamma_{h_{c}\pi^{+}\pi^{-}}(s), \ \Gamma_{\psi(2S)\pi\pi}(s) \\ &= \frac{3}{2}\Gamma_{\psi(2S)\pi^{+}\pi^{-}}(s), \ \Gamma_{D\bar{D}^{*}\pi}(s) = 3\Gamma_{D^{0}D^{*-}\pi^{+}}(s), \ \Gamma_{D\bar{D}}(s) = 2\Gamma_{D^{+}D^{-}}(s), \\ &\Gamma_{D\bar{D}^{*}}(s) = 2\Gamma_{D^{+}D^{*-}+c.c.}(s), \ \Gamma_{D^{*}\bar{D}^{*}}(s) = 2\Gamma_{D^{*+}D^{*-}}(s), \end{split}$$

$$g_{D^+D^-} : g_{D^+D^{*-}} : g_{D^{*+}D^{*-}} = 1:4:7$$
 [1]

parameters	value
$g_0(MeV)$	23.865 ± 0.602
$M_X(\text{GeV})$	4.219 ± 0.001
$\Gamma_0(\text{GeV})$	0.005 ± 0.002
$\Gamma_{e^+e^-}$ (keV)	0.3~1.3
$\chi^2/d.o.f.$	292.84/(357-43) = 0.93

Due to interfered multiplicity and different bkg. shapes, we only gave out the leptonic width range, which is consistent with that of $\psi(4^3S_1)$ (or mixed with a small $\psi(2^3D_1/3^3D_1)$) in the refined potential models.

[1] M.B. Voloshin, Phys. Rev. D 85, 034024 (2012)

The European Physical Journal C

An interpretation of non-peak in $M(D^{(*)}\overline{D}^{(*)})$ @4220 MeV

Other fit projections see Slide 20 for details.

 $\psi(4040)_{fixed} + \psi(4160)_{fixed} + Y(4260) + \psi(4415)_{fixed}$

Interference among multiple ψ states can describe $M(D^{(*)}\overline{D}^{(*)})$ very well.

Certainly, more improved measurements of e⁺e⁻ → D^(*)D^(*) is necessary to further confirmed if non-peak around 4220 MeV is caused by destructive interference.

Good news from BESIII

Phys. Rev. D 102, 112009 (2020)

Investigation of non-peak in R scan @4220 MeV

At present, the $\psi(4040)$ and $\psi(4160)'$ s parameters in PDG mainly derives from the BESII fit to the R-scan distribution. We believe that it is time to update the experimental data as well as the fit.

Y(4260) is ψ(4S) ?

If this law of mass gap relation still holds for states with n = 3, 4 in J/ ψ and Y families, the mass of ψ (4S) should be located at 4,264~4290 MeV rather than 4415 MeV, which is compatible with the screened potential model prediction[PRD 79, 094004 (2009)]. Eur. Phys. J. C 74, 3208 (2014)

Fig. 1 A comparison between the J/ψ and Υ families

The product of the cross section and Br. around 4220 MeV is ~0.3 pb. Exploiting Br (X(3872) $\rightarrow \pi^+\pi^- J/\psi$)=4.1% measured by BABAR[1], $\sigma_{top}(e^+e^- \rightarrow \gamma X(3872)) = 7.3$ pb, which is about one tenth of $\sigma_{top}(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$.

According to Ref [2], Br(Y(4260) $\rightarrow \pi^+\pi^- J/\psi$) is $\mathcal{O}(10^{-4})$ and $\Gamma_{tot}(Y(4260)) \sim 50$ MeV, and we can do an analogy to gain $\Gamma(Y(4260) \rightarrow X(3872)) = 5 \times \mathcal{O}(10^{-1})$ keV. assuming X(3872) as the $\chi_{c1}(2P)$ state, $\Gamma(4^3S_1 \rightarrow 2^3P_1) = 5 \times \mathcal{O}(10^{-1})$ keV.

The radiative widths Γ(4³S₁ → 2³P₁) [3] used GI and non-relativistic models are calculated to be 0.49 and 0.92 keV, which is consistent with the above rough estimation and suggests Y(4260) is the ψ(4³S₁) candidate.

 $Y(4260) \rightarrow K\overline{K}J/\psi$?

There are some hints for this decay, and it would be confirmed in the near future.

PRD 97, 071101(R) (2018)

Summary of $\psi(4260)$

- Excited *cc* state
- Tetraquark
- *cc*-gluon hybrid
- $D_1\overline{D}$ molecule
- $D_s^{*+}D_s^{*-}$ effect
- et al.

As mentioned above V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) might interpreted as a mixture of 1³ C. (or mixed with a bove V(1260) mixe

hrqi@ihep.ac.cn, qihongrong@tsinghua.edu.cn

Backup

Theoretical interpretations

- Excited charmonium: PRD 99, 114003 (2019), EPJC 79, 613 (2019), EPJC 78, 136 (2018), PRD79,094004(2009), PRD72,031503(2005)
- Compact tetraquark: PRD 89, 114010 (2014), EPJC 71, 1534
- *cc*-gluon hybrid: Phys. Lett. B 628, 215. Phys. Lett. B 631, 164. Phys. Lett. B 625, 212.
- Meson-meson molecule: PRL 111, 132003, PRD 94, 054035 (2016), PRD 79, 014001, PRL102, 242003 (2009),
- Threshold effect: Acta Phys.Pol.B.51(8),1713–1737(2020)
- et al.