

低能康普顿散射电子用于高增益电 路标定的方法研究

陈叶波, <u>韩雨孛</u>, 刘帅毅, 朱宏博

目录

- •背景介绍和研究目标
- •实验平台以及设备简介
- 数据处理以及初步结果
- •总结与讨论

- 硅探测器:优异的位置与能量分辨,快速时间响应,抗辐照性能等
- 广泛应用于对撞机实验中的顶点探测器以及径迹探测器中,为了满足更高的抗辐照性能以 及更少物质量引入,芯片逐渐向更薄发展 -> 更少的电荷收集,更小的初始信号,更高增益 的放大电路
- 芯片标定:使用一个/多个已知能量沉积的信号源来 验证以及校准芯片响应的过程,是芯片性能研究的重要步骤之一
- 传统方法(放射源已知能量的特征X射线)难以提供小于 6 keV 的信号源 (用于TaichuPix, JadePix-2/3, ATLASPix3 ToT的研究)

- 使用康普顿散射电子实现小能量注入
- 康普顿散射:光子与物质相互作用转移部分能量的过程 -> 提供能谱连续且能量较低(可选) 的散射电子

• 研究目标:使用康普顿散射电子用于高增益电路标定的方法以及可行性

- 实验搭建
- 设备使用:
 - 粒子源:²⁴¹Am
 - 测试芯片:混合型硅像素探测器
 - 像素大小: 100 x 25 μm
 - 芯片灵敏区域面积: 6.8 mm x 9.2 mm
 - X射线探测: Amptek X-123 x射线能谱仪 (灵敏窗直径:5 mm, FWHM: 550 eV)

LBNL 实验结果

实验内容

- 散射角度: 51°, 56°, 63°, 67° (共计517小时取数)
- 使用目标能量范围的 X-ray 作为触发 -> 硅像素探测 器取数

测试结果

- 4个低能量沉积测量点
- 完成了能量沉积与相应的线性拟合
- 存在问题:
 - 测试时间长(需要700小时完成50%像素的单角 度测量)
 - 难以获得低于1 keV的能量沉积

@IHEP改进:使用高计数率的X-tube以及更高能量分辨的X射线探测器

Paper: arXiv:2008.11860v1

实验平台搭建

▶ 使用高计数率的X-tube 以及更高能量分辨的X射线探测器

- 实验搭建以及读出系统:
 - X-tube, X123, JadePix-1, 屏蔽盒...
 - Jadepix-1读出系统:5 杭/触发
 - X-tube以及X123的控制与读出系统

Mini-X2: X-Ray Tube System

- 商用设备以及控制软件
- 配套准直孔以及滤片
- <u>https://www.amptek.com/products/x-ray-sources/mini-x2-ray-tube</u>

≻X123:

- X-ray 探头
- 配套控制以及读出软件
- 能够实现给定能区的触发输出
- FWHM (5.9 keV) : ~ 122 eV

<u>https://www.amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectors-for-xrf-eds/fastsdd-silicon-drift-detector</u>

≻JadePix-1

- 第一代用于CEPC顶点探测器的CMOS像素传感器
- 用于研究不同像素结构对传感器性能的影响
- 成功完成了放射源测试 (Fe55, Sr90) 以及束流测试 (@DESY testbeam)
- •测试子阵列A3: 1.584 x 0.768 mm

Amptek DppMCA C:\Users\wo101\Desktop\data_dppmca\si_closer_AlFilter.mca

rine A	5 Ba	-b-0-	_	8 32		1 ++			II.			L+* L4	• •	A+B		2		INNE	DELTA		<u>ہ</u>
_		 	-	• 72			•				**		- 4		<u> </u>	· · ·	804	FRST		-	
r. F	ì	- i		i		i			i.			i i		÷		i			ì		
	i i	- î		i		i			i.			i i		i.		i			i		
5303	 <u> </u>	 _ -				_ i_						<u>+</u> –				_ +					
-							22) 1	لم لام	v											
3977	 					_						<u> </u>		_ _		_					
									-					-							
-									ł			ł		ł							
2651	 	 										Ļ									
		i		i		i			i.			ί.		i.		ĺ			i		
-	Ì	Ì		Í		Ì			İ			i I	24	.98	7 ke	eV ∣			Ì		
1325																					
				$\neg \neg$					Ţ							T					
-												1									
	3.42	7.54		11.6	6	15.78			9.91		2	4.02		28,15		32.2	26		36.3	8	

File View MCA Display Analyze DPP Help

散射后能谱

File	View	MCA	Displa	ay A	nalyze	DPP	Help																	
Ê	8	B 🖻	F	₽₽	- (*	r,	Ξ	••	\$. .	<u>يە مە</u>		1 1	- 14		<u>A+B</u>	-	\?		I		2	
24																								
24		+-		-+-		-+			÷	_		+-				_	+-		-+					
				-											ľ							1		
				ł					1					22	1 4	۵V						ł		
18		+-							+	_				+				_	- +					
		i.	1	ì		i			i.			÷.			i i		ł.		- i			i		
		i -		i		i	т	ria		• fc	n r	i.	- (i		i			i		
11		+-		-		-+	1	ade		V-1		+-				_			-+					
2								uut		~			- 11											
													1											
La				_					Ļ	_			L,			24.9	187	Kev			-++	1		l +ht+ +
	landa		. L.	1												1.		n Li	Just 1	111		h		Mak
	1. all	لمنالك	L .	t E								Lul		i i i			WM		(W)	T.A.				
		3.42	16	he	ر بالغال	11.6	5 1.1.1.1.1.1.1	أو اس	5.78	الد		991		24	02		28 15		32.2	6		36.31		

File View MCA Display Analyze DDD Help

- 散射角度选择 (θ) :~71 度 (散射电子能量 0.64 keV)
- •测试时长: 22小时
 - 总触发数:7503
 - 测试传感器 (JadePix-1) 预期能谱组成 : 噪声+原始能谱的随机抽样+康普顿散射事例

实验内容

- 散射角度选择 (θ) :~71 度 (散射电子能量 0.64 keV)
- •测试时长: 22小时
 - 总触发数:7503
 - 测试传感器 (JadePix-1) 预期能谱组成 : 噪声+原始能谱的随机抽样+康普顿散射事例

▶信号事例数估计:

- JadePix-1 的有效探测区域以及有效面积
- $N_{trigger_total} \times F_{effective_epi_layer} \times F_{effective_area}$

•
$$7503 \times \frac{18}{250} \times \frac{33\mu m \times 33\mu m \times 42 \times 14}{\pi \times 750\mu m \times 750\,\mu m} \sim O(100)$$

▶ 难以观察到康普顿散射电子信号
▶ 扣除本底(噪声以及原始能谱的随机抽样)
▶ 最终有效事例率小于LBNL实验

总结与讨论

- 完成了使用低能康普顿散射电子用于电路标定的方法研究
- •由于有效事例数统计量太低,无法观察到低能散射电子的信号

潜在原因以及未来研究改进:

➤JadePix-1 有效区域比例小 -> 使用大面积耗尽型硅探测器
➤X-tube 能谱连续且构成复杂 -> 回归使用放射源以实现比较干净的初始能谱

Backup: Calibration with Fe55 and MiniX (Au target)

8/16/21

Backup

8/16/21

0/ 10/ 21