Recent results from Belle
 ——Two－photon interactions

焦健斌
山东大学
中国物理学会高能物理分会第十三届全国粒子物理学术会议（2021） 2021年8月15日－20日青岛

Belle Detector

KEKB

Selected topics

Charmonium(like) candidates in two-photon interactions:

\checkmark The study of $\gamma \gamma \rightarrow \gamma \psi(2 S)$ at Belle [arXiv: 2105.06605 (2021)]
$\checkmark X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$ in single-tag two-photon reactions [PRL 126, 122001 (2021)]

Charmonium spectrum

Many puzzles arise from these XYZ states since $X(3872)$ was observed at Belle Experiment in 2003.

The 2P triplets near 3.9GeV

One of the XYZ puzzles concerns the candidates for P-wave triplet states near 3.9 GeV/c², including X(3860), X(3872), X(3915), X(3930), etc.

PHYSICAL REVIEW D 72, 054026 (2005)

Higher charmonia

T. Barnes, ${ }^{1, *}$ S. Godfrey ${ }^{2, \dagger}$ and E. S. Swanson ${ }^{3,{ }^{\text {, }}}$
${ }^{1}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA and Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{2}$ Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa K1S 5B6, Canada ${ }^{3}$ Rudolph Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, UK (Received 29 May 2005; published 29 September 2005)
This paper gives results for the spectrum, all allowed E1 radiative partial widths (and some important M1 widths) and all open-charm strong decay amplitudes of all $40 c \bar{c}$ states expected up to the mass of the 4 S multiplet, just above 4.4 GeV . The spectrum and radiative widths are evaluated using two models, the relativized Godfrey-Isgur model and a nonrelativistic potential model. The electromagnetic transitions are evaluated using Coulomb plus linear plus smeared hyperfine wave functions, both in a nonrelativistic potential model and in the Godfrey-Isgur model. The open-flavor strong decay amplitudes are determined assuming harmonic oscillator wave functions and the ${ }^{3} \mathrm{P}_{0}$ decay model. This work is intended to motivate future experimental studies of higher-mass charmonia, and may be useful for the analysis of high-statistics data sets to be accumulated by the BES, CLEO, and GSI facilities.

TABLE III. 1P and 2P E1 radiative transitions (format as in Table II)

Multiplets	Initial meson	Final meson	$\mathrm{E}_{\gamma}(\mathrm{MeV})$		$\Gamma_{\text {thy }}(\mathrm{keV})$		$\Gamma_{\text {expt }}(\mathrm{keV})$
			NR	GI	NR	GI	
$1 \mathrm{P} \rightarrow 1 \mathrm{~S}$	$\chi_{2}\left(1^{3} \mathrm{P}_{2}\right)$	$J / \psi\left(1^{3} \mathrm{~S}_{1}\right)$	429	429	424	313	426 ± 51
	$\chi_{1}\left(1^{3} \mathrm{P}_{1}\right)$		390	389	314	239	291 ± 48
	$\chi_{0}\left(1^{3} \mathrm{P}_{0}\right)$		303	303	152	114	119 ± 19
	$h_{c}\left(1^{1} \mathrm{P}_{1}\right)$	$\eta_{c}\left(1^{1} \mathrm{~S}_{0}\right)$	504	496	498	352	
$2 \mathrm{P} \rightarrow 2 \mathrm{~S}$	$\chi_{2}\left(2^{3} \mathrm{P}_{2}\right)$	$\psi^{\prime}\left(2^{3} \mathrm{~S}_{1}\right)$	276	282	304	207	
	$\chi_{1}\left(2^{3} \mathrm{P}_{1}\right)$		232	258	183	183	
	$\chi_{0}\left(2^{3} \mathrm{P}_{0}\right)$		162	223	64	135	
	$h_{c}\left(2^{1} \mathrm{P}_{1}\right)$	$\eta_{c}^{\prime}\left(2^{1} \mathrm{~S}_{0}\right)$	285	305	280	218	
$2 \mathrm{P} \rightarrow 1 \mathrm{~S}$	$\chi_{2}\left(2^{3} \mathrm{P}_{2}\right)$	$J / \psi\left(1^{3} \mathrm{~S}_{1}\right)$	779	784	81	53	
	$\chi_{1}\left(2^{3} \mathrm{P}_{1}\right)$		741	763	71	14	
	$\chi_{0}\left(2^{3} \mathrm{P}_{0}\right)$		681	733	56	1.3	
	$h_{c}\left(2^{1} \mathrm{P}_{1}\right)$	$\eta_{c}\left(1^{1} \mathrm{~S}_{0}\right)$	839	856	140	85	

A. Nonrelativistic potential model
B. Godfrey-Isgur relativized potential model

Multiplet	State	Expt.	Input (NR)	Theor.	
				NR	GI
1 S	$J / \psi\left(1^{3} \mathrm{~S}_{1}\right)$	3096.87 ± 0.04	3097	3090	3098
	$\eta_{c}\left(1^{1} \mathrm{~S}_{0}\right)$	2979.2 ± 1.3	2979	2982	2975
2 S	$\psi^{\prime}\left(2^{3} \mathrm{~S}_{1}\right)$	3685.96 ± 0.09	3686	36723676	
	$\eta_{c}^{\prime}\left(2^{1} \mathrm{~S}_{0}\right)$	3637.7 ± 4.4	3638	3630	3623
3 S	$\psi\left(3^{3} \mathrm{~S}_{1}\right)$	4040 ± 10	4040	40724100	
	$\eta_{c}\left(3^{1} \mathrm{~S}_{0}\right)$			40434064	
4 S	$\psi^{3}\left(4^{3} \mathrm{~S}_{1}\right)$	4415 ± 6	4415	44064450	
	$\eta_{c}\left(4^{1} \mathrm{~S}_{0}\right)$			4384	4425
1 P	$\chi_{2}\left(1^{3} \mathrm{P}_{2}\right)$	3556.18 ± 0.13	3556	3556	3550
	$\chi_{1}\left(1^{3} \mathrm{P}_{1}\right)$	3510.51 ± 0.12	3511	3505	3510
	$\chi_{0}\left(1^{3} \mathrm{P}_{0}\right)$	3415.3 ± 0.4	3415	34243445	
	$h_{c}\left(1^{1} \mathrm{P}_{1}\right)$	see text		35163517	
2 P	$\chi_{2}\left(2^{3} \mathrm{P}_{2}\right)$			39723979	
	$\chi_{1}\left(2^{3} \mathrm{P}_{1}\right)$			39253953	
	$\chi_{0}\left(2^{3} \mathrm{P}_{0}\right)$		38523916		
	$h_{c}\left(2^{1} \mathrm{P}_{1}\right)$		39343956		

Some E1 transitions that are of special importance in the study of higher charmonium states.

The 2P triplets near 3.9GeV

$$
\chi_{c 1}(3872)
$$

$$
\left.I_{(J}{ }^{P C}\right)=0^{+}\left(1^{++}\right)
$$

also known as $X(3872)$
This state shows properties different from a conventional $q \bar{q}$ state. A candidate for an exotic structure. See the review on non $-q \bar{q}$ states.

First observed by CHOI 03 in $B \rightarrow K \pi^{+} \pi^{-} J / \psi(1 S)$ decays as a narrow peak in the invariant mass distribution of the $\pi^{+} \pi^{-} J / \psi(1 S)$ final state. Isovector hypothesis excluded by AUBERT 05B and CHOI 11.
AAIJ 13Q perform a full five-dimensional amplitude analysis of the angular correlations between the decay products in $B^{+} \rightarrow$ $\chi_{c 1}(3872) K^{+}$decays, where $\chi_{c 1}(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$and $J / \psi \rightarrow$ $\mu^{+} \mu^{-}$, which unambiguously gives the $J^{P C}=1^{+}+$assignment under the assumption that the $\pi^{+} \pi^{-}$and J / ψ are in an S-wave. AAIJ 15AO extend this analysis with more data to limit D-wave contributions to $<4 \%$ at 95% CL.

- Production

- In $\bar{p} p / p p$ collision: rate similar to charmonia
- In B decays: $K X$ similar to $\bar{c} c, K^{*} X$ smaller than $\bar{c} c$
- $Y(4260) \rightarrow \gamma+X(3872)$
- BR: open charm $\sim 50 \%$, charmonium $\sim 0 \%$.
- Nature (very likely exotic)
- Loosely $\bar{D}^{0} D^{* 0}$ bound states (like deuteron)?
- Mixture of $\chi_{c 1}(2 P)$ and $\bar{D}^{0} D^{* 0}$ bound state?
- Many other possibilities (if it is not $\chi_{c 1}(2 P)$, there is $\chi_{c 1}(2 P)$)?

The 2P triplets near 3.9GeV

$\chi_{c 2}(3930)$

${ }_{1 G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)$
\checkmark X(3930) discovered by Belle
[Phys. Rev. Lett. 96, 082003 (2006)]
\checkmark Identified as $\chi_{c 2}(2 P)$ candidate by Babar [Phys. Rev. D 81, 092003 (2010)]

not seen in $\omega \mathrm{J} / \psi \begin{aligned} & \text { probably } \\ & \text { different }\end{aligned}$ X(3940)

$$
\begin{aligned}
& M=3942+7-6 \pm 6 \mathrm{MeV} \\
& \Gamma_{\text {tot }}=37+26-15 \pm 12 \mathrm{MeV}
\end{aligned}
$$

693/fb, PRL 100, 202001

$$
\begin{gathered}
M \approx 3943 \pm 11 \pm 13 \mathrm{MeV} \\
\Gamma_{\text {tot }} \approx 87 \pm 22 \pm 26 \mathrm{MeV}
\end{gathered}
$$

253/fb, PRL 94, 182002

Probably the $\chi_{\mathrm{c} 2}{ }^{\prime}$ Z(3930)

$M=3929 \pm 5 \pm 2 \mathrm{MeV}$ $\Gamma_{\text {tot }}=29 \pm 10 \pm 2 \mathrm{MeV}$

395/fb, PRL 96, 082003

Resonance	Mass $\left(\mathrm{GeV} / c^{2}\right)$	Width (MeV)
$\chi_{c 0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
$\chi_{c 2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$

Amplitude analysis of $B^{+} \rightarrow$ $K^{+} D \bar{D}$. Both 0^{++}and 2^{++} states found at $m(D \bar{D}) \approx$ $3930 \mathrm{MeV} / \mathrm{c}^{2}$.

The 2P triplets near 3.9 GeV

$X(3915)$
 $I^{G}\left(J^{P C}\right)=0^{+}\left(0\right.$ or $\left.2^{++}\right)$

was $\chi_{c 0}(3915)$
The experimental analysis prefers $J^{P C}=0^{++}$. However, a re analysis presented in ZHOU 15 C shows that if helicity- 2 dominance assumption is abandoned and a sizable helicity-0 component is allowed, a $J^{P C}=2^{++}$assignment is possible.
\checkmark X(3915) discovered by Belle
[Phys. Rev. Lett. 104, 092001 (2010)]
\checkmark Quantum number determined by Babar
[Phys. Rev. D 86, 072002 (2012)]

X (3915) From BaBar:

- $M=(3919.4 \pm 2.2 \pm 1.6) \mathrm{MeV} / c^{2}$;

- $\Gamma=(13 \pm 6 \pm 3) \mathrm{MeV}$;
- $N^{\text {sig }}=59 \pm 10$;
- Signif. $=7.6 \sigma$.
- Data largely prefer $J^{P}=0^{ \pm}$over 2^{+}.

$\chi_{c 0}(3860)$

$$
,^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

OMITTED FROM SUMMARY TABLE
The assignment $J^{P}=0^{+}$is preferred over 2^{+}by 2.5 sigma.
Observed by CHILIKIN 17 using full amplitude analysis of the process $e^{+} e^{-} \rightarrow J / \psi D \bar{D}$, where $D=D^{0}, D^{+}$.
$\checkmark \quad$ X(3860) observed at Belle Experiment only.
[Phys. Rev. D 95, 112003 (2017)]
$X(3915)$ was expected to be $\chi_{c 0}(2 P)$ candidate.
$X(3915)$ from Belle:

- $M=(3915 \pm 3 \pm 2) \mathrm{MeV}$;
- $\Gamma=(17 \pm 10 \pm 3) \mathrm{MeV}$
- $N^{\text {sig }}=49 \pm 14 \pm 4$ events
- Signif. $=7.7 \sigma$.

Two photon interaction

* Contributions from two-photon process studies to XYZ particles.

$\gamma \gamma \rightarrow \gamma \psi(2 S)$ at Belle

*Data sample: $980 \mathrm{fb}^{-1} e^{+} e^{-}$collisions data samples.
arXiv: 2105.06605 (2021)
Prepared for submission to JHEP
$* \psi(2 S)$ reconstructed from $J / \psi \pi^{+} \pi^{-}$, and J / ψ reconstructed from $e^{+} e^{-}$ or $\mu^{+} \mu^{-}$.

* Background dominated by $e^{+} e^{-} \rightarrow \psi(2 S)$ via ISR.

$\boldsymbol{\gamma} \boldsymbol{\gamma} \rightarrow \boldsymbol{\gamma} \psi(2 S)$ at Belle

* Fitting to the $M(\gamma \psi(2 S))$ distribution.

$$
f_{\mathrm{PDF}}=f_{\mathrm{R}_{1}}+f_{\mathrm{R}_{2}}+f_{\mathrm{ISR}}+f_{\mathrm{bkg}}+f_{\mathrm{SB}}
$$

R_{1} near $3.92 \mathrm{GeV} / \mathrm{c}^{2}$: $N_{1}=30.3 \pm 8.6$, 4.0σ including systematic uncertainties.
R_{2} near $4.01 \mathrm{GeV} / \mathrm{c}^{2}$: $N_{2}=18.2 \pm 9.3$, 3.0σ local statistical significance.
Study on look-elsewhere effect show a global significance of 2.8σ.

$\boldsymbol{\gamma} \boldsymbol{\gamma} \rightarrow \boldsymbol{\gamma} \psi(2 S)$ at Belle

$* R_{1}$ may be $X(3915), \chi_{c 2}(3930)$, or mix of them. Assuming R_{1} is the $\chi_{c 2}$ (3930), a rough estimation shows $\Gamma\left(\chi_{c 2}(3930) \rightarrow \gamma \psi(2 S)\right)=200 \sim 300 \mathrm{keV}$. [207 keV calculated by Gl model in PRD 72, 054026 (2005)].
$\nLeftarrow R_{2}$ has the same mass and width with 2^{++}partner of $X(3872)$ predicted in PRD 88, 054007 (2013), Eur. Phys. J. C 75, 547 (2015) .

Resonant parameters	$J=0$	$J=2$
M_{1}	$3921.3 \pm 2.4 \pm 1.6$	
Γ_{1}	$0.0 \pm 5.3 \pm 2.0$	
Γ_{1}^{UL}	11.5	
$\Gamma_{\gamma \gamma} \mathcal{B}\left(R_{1} \rightarrow \gamma \psi(2 S)\right)$	$8.2 \pm 2.3 \pm 0.9$	$1.6 \pm 0.5 \pm 0.2$
M_{2}	$4014.4 \pm 4.1 \pm 0.5$	
Γ_{2}	$6 \pm 16 \pm 12$	
Γ_{2}^{UL}	39.3	
$\Gamma_{\gamma \gamma} \mathcal{B}\left(R_{2} \rightarrow \gamma \psi(2 S)\right)$	$5.3 \pm 2.7 \pm 2.5$	$1.1 \pm 0.5 \pm 0.5$
$\Gamma_{\gamma \gamma}^{\mathrm{UL}} \mathcal{B}\left(R_{2} \rightarrow \gamma \psi(2 S)\right)$	12.8	2.6
$M_{X(3915)}$	3918.4 (fixed)	
$\Gamma_{X(3915)}$	20 (fixed)	
$\Gamma_{\gamma \gamma} \mathcal{B}(X(3915) \rightarrow \gamma \psi(2 S))$	$10.9 \pm 3.1 \pm 1.2$	$2.2 \pm 0.6 \pm 0.2$
$M_{\chi_{c 2}(3930)}$	-	3922.2 (fixed)
$\Gamma_{\chi_{c 2}(3930)}$	-	35 (fixed)
$\Gamma_{\gamma \gamma} \mathcal{B}\left(\chi_{c 2}(3930) \rightarrow \gamma \psi(2 S)\right)$	-	$2.4 \pm 0.7 \pm 0.4$

$e^{+} e^{-} \rightarrow e^{+} e^{-} J / \psi \pi^{+} \pi^{-}$at Belle

Various production ways of $X(3872)$:
$B \rightarrow X(3872) K, \Lambda_{b}^{0} \rightarrow X(3872) p K^{-} ; e^{+} e^{-}$radiative decay; $p p$ and $p \bar{p}$ collisions

* Data sample: $825 \mathrm{fb}^{-1}$ in $e^{+} e^{-}$collisions near 10.6 GeV .
* X (3872) production in two-photon collision is studied.

* Tag e^{+}or e^{-}in the final states.
* If $X(3872)$ has a molecular component, it must has a steeper Q^{2} dependence than the regular $c \bar{c}$ state.
The value of the two-photon decay width is sensitive to the internal structure of $X(3872)$.

$e^{+} e^{-} \rightarrow e^{+} e^{-} J / \psi \pi^{+} \pi^{-}$at Belle

- The dominant background is from radiatively produced $\psi(2 S)$ in $e^{+} e^{-} \rightarrow e^{+} e^{-} \psi(2 S)$ with $\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$.

Similar distribution was seen in the Belle ISR study. [PRL 99, 182004 (2007)]

- Extra Q^{2} requirement to reduce non-twophoton background.

With $0.032<B(X(3872) \rightarrow$ $\left.\pi^{+} \pi^{-} J / \psi\right)<0.061$ at 90% C.L., $\tilde{\Gamma}_{\gamma \gamma}=20-500 \mathrm{eV}$. This is consistent with the $c \bar{c}$ model prediction.
[NPB 523, 423 (1998), PRD 83, 114015 (2011)]
\checkmark Data taking at Belle has been stopped for more than 10 years, new exciting results continue to be produced by Belle Collab.
\checkmark Two states are reported in the study of the two-photon process $\gamma \gamma \rightarrow \gamma \psi(2 S)$ from $3.7 \mathrm{GeV} / \mathrm{c}^{2}$ to $4.2 \mathrm{GeV} / \mathrm{c}^{2}$ for the first time with the full Belle data sample; the evidence of $\mathrm{X}(3872)$ in $\mathrm{X}(3872) \rightarrow$ $\pi^{+} \pi^{-} J / \psi$ in single-tag two-photon reactions are found.
\checkmark The production rate of two photon interaction is typically low, much larger data samples are essential to more instructive results, super-high luminosity experiments, such as Belle II, are great hopes.
\checkmark More results about XYZ studies at Belle II can be found Qingping JI's talk on Aug. 17.

Four steps:
\checkmark Intermediate luminosity: $(1 \rightarrow 3) \times 10^{35} / \mathrm{cm}^{2} / \mathrm{sec}, 5 \mathrm{ab}-1$
\checkmark High Luminosity: $6 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{sec}, 50 \mathrm{ab}^{-1}$ with a detector upgrade
\checkmark Beam-polarization upgrade, advanced R\&D
\checkmark Ultra high luminosity: $4 \times 10^{36} / \mathrm{cm}^{2} / \mathrm{sec}, 250 \mathrm{ab}-1$, R\&D project

