Dark Matter Search in the CMB

高宇 Yu Gao

IHEP, CAS

高能物理大会2021, 2021/8/17

Outline

- Particle Dark Matter Effects on the CMB
- $DM \leftrightarrow CMB$ anisotropies (Ionization)
- DM \leftrightarrow 21cm (Temperature)
- Forecasts for DM and PBHs
- Inhomogeneity from DM heating

Theory orders are placed.

CMB covers a wide DM mass range! ~MeV opportunity

CMB & Dark Matter

DM probes from the CMB

- CMB spectral distortion: `coupled' DM, early/steady energy injection, DM-photon conversion, etc
- CMB polarization: pol. rotation in CPV medium
- CMB derivatives:

21cm maps of matter power-spectrum: spatial & temperature distributions

Impact from steady (high-energy) injection

- Deposit energy into IGM during the dark age of Universe
- (1) Ionize (fraction of) the IGM; (2) Heats the IGM
- A small energy budget for a large impact

On decay lifetime:

Continuum Indirect Search (Fermi-LAT, etc):

IGM ionization pre-EoR (PLANCK)

IGM heating pre-EoR (21cm,projected)

 $\tau > 10^{24} \text{ s}$

 $\tau > 10^{26}$ s (existence) Higher precision by data

 $\tau > 10^{26}$ s (lines: $\tau > 10^{28}$ s)

The `standard' ionization history

Standard ionization evolution (pre-EoR)

$$\frac{dX_e}{dt} = \left\{ (1 - X_e)\beta - X_e^2 n_b \alpha^{(2)} \right\}$$

Ionization rate (by radiation field):

$$\beta \equiv \langle \sigma v \rangle \left(\frac{m_e T}{2\pi} \right)^{3/2} e^{-\epsilon_0/T}$$

Recombination:

$$\alpha^{(2)} \equiv \langle \sigma v \rangle$$

Approx. capture rate to a non-ground state

$$\alpha^{(2)} \equiv \langle \sigma v \rangle$$

 $\alpha^{(2)} = 9.78 \frac{\alpha^2}{m_e^2} \left(\frac{\epsilon_0}{T}\right)^{1/2} \ln\left(\frac{\epsilon_0}{T}\right)$

 x_{e} reduces to a 10⁻⁴ floor during the cosmic dark age and returns to unity during EoR

DM Effect 1: ionization

More free electrons

•More CMB scattering \rightarrow Damping on C_l

$$\frac{dx_e}{dz} = \left(\frac{dx_e}{dz}\right)_{\text{orig}} - \frac{1}{(1+z)H(z)}(I_{Xi}(z) + I_{X\alpha}(z))$$
"Deposit Channels"
$$I_{Xi}(z) = f_i(E, z)\frac{dE/dVdt}{n_H(z)E_i} \quad \begin{array}{c} \text{ionization from} \\ \text{ground state} \end{array}$$

$$\frac{dX_e}{dt} = \left\{(1-X_e)\beta - X_e^2 n_b \alpha^{(2)}\right\} \quad I_{X\alpha}(z) = f_\alpha(E, z)(1-C)\frac{dE/dVdt}{n_H(z)E_\alpha} \quad \begin{array}{c} \text{ionization from} \\ \text{excited states} \end{array}$$
SM: H atom ionization
and recombination

(+ other channels)

DM: impact on xe

Annihilation: raises the x_e floor,

Decay: steady rise in x_e

The `perturbed' ionization history

10-1

10-3

104

× 10⁻²

 \mathbf{x}_{e} floor rises

Ionization enhances photon scattering

$$C_l = 4\pi A \int_0^\infty d(\ln k) \, k^{n_s} D^2(k) T^2(k)$$

in the damping function:

$$D(k) = \int dz \, g(z) \exp\left(-\frac{k^2}{k_D^2(z)}\right)$$

$$\frac{1}{k_D^2} = \int_z^{\infty} dz \, \frac{c}{H^2(z)} \frac{1}{6(1+R)\tau'(z)} \left[\frac{R^2}{(1+R)} + \frac{16}{15}\right]$$

$$\underbrace{\left(\frac{y}{2}, \frac{y}{2}, \frac{y}{2}$$

Redshift dependence in injection rate

- Annihilation and/or Decay of WIMPs
- Energy release during dark ages

DM Annihilation: fast during high z,

$$\frac{dE}{dV\,dt} = \rho_c^2 c^2 \Omega_{\rm DM}^2 (1+z)^6 p_{\rm ann}(z) \qquad \sim (z+1)^6$$

Late time density clustering boosts the annihilation rate after $z\sim O(50)$

$$\left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{INJ}}^{\mathrm{ann,boosted}} = \left[1 + B(z)\right] \left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{INJ}}^{\mathrm{ann}}$$
$$B(z) = \frac{\Delta_{\mathrm{c}}\rho_{\mathrm{c}}}{\rho_{\mathrm{DM}}^2} \int_{M_{\mathrm{min}}}^{\infty} MB_{\mathrm{h}}(M) \frac{\mathrm{d}n}{\mathrm{d}M} \mathrm{d}M$$

DM Decay: a steady rate, unaffected by structure formation

$$\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t} = \Gamma_{\mathrm{DM}} \cdot \rho_{\mathrm{c},0} \Omega_{\mathrm{DM}} (1+z)^3 \quad \sim (z+1)^3$$

Lagged energy deposition

Injected high-energy particles lose energy by scattering, ionization, excitations, etc...

Not instantaneously deposited into the IGM if particles are energetic (E >> KeV): * accumulative over earlier injection * efficiency reduces at later time

Energy "fraction" into ionization (of H)

Numerical calculation

Implemented into **HyRec** codes:

new physics induced excitation, scattering terms, Lyman-α photons, etc.

Also see: Belotsky, Kirillov 2015

Xe on CMB C_l: damping & pol. peak shift

PLANCK 18: Pol. data lifts EoR degeneracy

14

Current limits: WIMP annihilation

Planck Collaboration: Cosmological parameters

Fig. 46. *Planck* 2018 constraints on DM mass and annihilation cross-section. Solid straight lines show joint CMB constraints on several annihilation channels (plotted using different colours), based on $p_{ann} < 3.2 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1} \text{ GeV}^{-1}$. We also show the 2σ preferred region suggested by the AMS proton excess (dashed ellipse) and the *Fermi* Galactic centre excess according to four possible models with references given in the text (solid ellipses), all of them computed under the assumption of annihilation into $b\bar{b}$ (for other channels the ellipses would move almost tangentially to the CMB bounds). We additionally show the 2σ preferred region suggested by the AMS/PAMELA positron fraction and *Fermi*/H.E.S.S. electron and positron fluxes for the leptophilic $\mu^+\mu^-$ channel (dotted contours). Assuming a standard WIMP-decoupling scenario, the correct value of the relic DM abundance is obtained for a "thermal cross-section" given as a function of the mass by the black dashed line.

PLANCK 18: Cosmological parameters' 15 Thermal WIMP mass limit: 10~30 GeV

Near future: How about more pol. data

AC	Т, С	Chile	
	ACT		

实验	$\sigma_{P\!\!,v}~(\mu k')$	$\theta_{FWHM,v}(')$	观测频率	参考文献	实验状态
			(GHz)	arX1v 亏	l i este
AliCPT	2.06	15.37	95	1710.03047	在建
	2.06	9.73	150		
AdvACTPol	7.8	2.2	90	1406. 4794v2	运行中
	6.9	1.3	150		
	25	0.9	230		
CLASS	39	90	38	1408.4788	运行中
	10	40	93		11 A A
	15	24	148		
	43	18	217		
Simons Array	13.9	5.2	95	1502.01983	运行中
	11.4	3.5	150		
	30.1	2.7	220		
SPT-3G	6	1	95	1407.2973	运行中
	3.5	1	150		
	6	1	220		
Simons	13.35	91	27	1808.07445	在建,预计
Observatory	24	63	39		2020 年建
-	2.69	30	93		成
Small	2.97	17	145		
Aperture	5.594	11	225		
Telescope	14.14	9	280		
Simons	73.5	91	27	1808.07445	在建,预计
Observatory	38.18	63	39		2020 年建
-	8.2	30	93		成
Large	8.91	17	145		
Aperture	21.21	11	225		
Telescope	52.32	9	280		

+ BICEP3 data available

Forecast on WIMP lifetime (decay to photons)

Stat.-only estimates on up-coming observations (no FG)

Experiment	$\chi \to e^+ e^-$	$\chi \to \gamma \gamma$
Planck	24	85
AdvACTPol	0.68	4.7
AliCPT	21	78
AliCPT+Planck	16	53
CLASS	5.5	30
Simons Array	0.35	1.5
Simons Observatory	0.92	4.2
SPT-3G	2.2	9.9

Lower bounds on DM decay lifetime (null-signal)

TABLE II. 95% C.L. upper limit on Γ_{χ} (in 10^{-26} s^{-1}) at $m_{\chi} = 10 \text{ GeV}.$

Experiment	$\chi\chi \to e^+e^-$	$\chi\chi\to\gamma\gamma$
Planck	39	32
Planck - Unclustered	39	33
AdvACTPol	330	330
AliCPT	32	22
AliCPT+Planck	51	42
CLASS	49	37
Simons Array	1.1×10^3	1.0×10^3
Simons Observatory	310	290
SPT-3G	140	130

Lower bounds on `vanilla' thermal DM mass (null-signal)

TABLE III. Expected 95% C.L. lower limit on m_{χ} (in GeV) assuming a thermal relic's annihilation cross-section $\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}.$

Evaporating PBHs, (low-mass)

PBH's Hawking radiation has a $dE/dt \sim (1+z)^3$ history

Significant sensitivity in relevant mass range: $M_{BH} = 10^{14 - 17} g$

PLANCK15 constraint: S.Clark., B.Dutta., Y.Gao, Y-Z.Ma, L.E. Strigari, 1612.07738

PLANCK18 limits & forecasts: Extended BH mass distributions, see: J.Cang., Y.Gao., Y-Z. Ma., 2011.12244

Experiment	Scaling Factor
Planck	1
COrE	37
CMB-S4	113
PICO	53
LiteBIRD	7
Simons Array	80

Spinning & lower mass (evaporating) PBHs

 $m_{PBH} = 10^{13} - 10^{17} g$

lifetime < AOU: evolving mass spectrum

J. Cang, Y.Gao, Y-Z. Ma, appearing soon.

BH accretion radiation (solar-supermassive)

Remaining Issue: EoR uncertainty (τ) *washes out late-time DM injection*

FIG. 4: The state-of-the-art measurement on $x_{\text{HI}}(z)$, taken from Table I. The black and red dashed lines are two examples of the "tanh" model which cannot fit the data very well.

Current Pol. data sensitivity MOSTLY derives from injection right-after recombination time

EoR uncertainty needs future exp. input

Remember this bump?

poor low-z sensitivity due to EoR We need a late-time handle.

DM effect #2: IGM temperature

 $\rm T_{IGM}$ can rise by 10^{2-3} near EoR

We may hear a lot from 21cm ...

.Precision reionization history:

Ionization fraction x_e, mean temperature T_G

.Distribution of neutral Hydrogen gas

temperature map & power spectrum

Simulated T₂₁ map w DM, Rennan Barkana, nature25791

Projected power spectrum sensitivities (from SKA white paper)

CMB's 21cm absorption windows

(1) neutral Hydrogen presence (2) T_S cooler than the CMB

Dark age window

(first discovery claim from EDGES)

Bowman, et.al. Nature 555, 67 (2018).

T_{21} dependencies...

- 21cm brightness relies on IGM temperature evolution
- Direct T_{GAS} measurements.

$$T_{21} = 26.8x_{HI} \frac{\rho_g}{\overline{\rho}_g} \left(\frac{\Omega_b h}{0.0327} \right) \left(\frac{\Omega_m}{0.307} \right)^{-1/2} \left(\frac{1+z}{10} \right)^{1/2} \left(\frac{T_S - T_{CMB}}{T_S} \right)$$

ionization
Gas density
distribution
$$Optical depth:Cosmology model-dependent$$
Gas spin temperature diff.
from rad. field
$$T_S = \frac{T_{CMB} + y_c T_G + y_{Ly\alpha} T_{Ly\alpha}}{1 + y_c + y_{Ly\alpha}},$$
$$y_c = \frac{C_{10}}{A_{10}} \frac{T_*}{T_G},$$
$$y_{Ly\alpha} = \frac{P_{10}}{A_{10}} \frac{T_*}{T_{Ly\alpha}},$$

DM induced heating can suppress / erase the 21cm signal

The average `brightness temperature' Z

$$T_{21} \approx 0.023 \mathrm{K} \cdot x_{\mathrm{H}_{\mathrm{I}}}(z) \left(\frac{0.15}{\Omega_{\mathrm{m}}} \cdot \frac{1+z}{10}\right)^{\frac{1}{2}} \frac{\Omega_{\mathrm{b}}h}{0.02} \left(1 - \frac{T_{\mathrm{CMB}}}{T_{\mathrm{S}}}\right)$$

29

EDGES: glimpse of 21cm era?

EDGES 2018

J. D. Bowman, et.al. Nature 555, 67 (2018).

2020 (summer)

Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case.

EDGES: A Discovery near 78 MHz?

~ Twice the LCDM signal ! LOFAR & MWA (by 2020) Upper limits only.

Discovery of 21cm means high WIMP sensitivity

On DM annihilation rates: by requiring injection induced $\Delta T_{21} < +100 \text{ or } +150 \text{ mK}$

G. D'Amico, P. Panci, A. Strumia 18'

Excluding vanilla thermal wimp below 10² GeV?

Unlike CMB pol., 21cm is VERY sensitive to DM clustering boost

WIMP lifetime sensitivity @ 21cm discovery

Limit on T_{GAS} rise: $\Delta T_{21} < +100$ or +150 mK at z=17

S.Clark, B.Dutta, Y.Gao, Y.-Z.Ma, L.E.Strigari, 18'

32

Better sensitivity if real data kicks in.

33

x_e, T inhomogeneity impact 21cm power spectrum

Modified DM energy deposit equation: inhomogeneous heating terms + transport terms

preliminary: (Mpc/pixel, deposit terms only, instantaneous deposition)

J.Cang, Y.Gao, in progress (stay tuned!)

CMB & 21cm: capable of EW, TeV scale DM search.

backups

Exp. specifications (DM)

Experiment	$\nu[{ m GHz}]$	$\omega_{\mathrm{E},\nu}^{-1/2}$ [µK-arcmin]	$\theta_{\rm FWHM}[{\rm arcmin}]$	$f_{ m sky}[\%]$	ℓ_{\min}	ℓ_{\max}
	28	113.1	7.1			
	41	99.0	4.8			
AdvACTPol $[20, 58, 59]$	$90 \star$	11.3	2.2	50	350^{a}	4000
	$150 \star$	9.9	1.4			
	230	35.4	0.9			
AliCPT [60]	90 *	2	15.4	10	30	600
Anor I [00]	$150\star$	2	9.7	10	30	000
	38	39	90			
	$93\star$	13	40	70	5	200
OLASS [22]	$148\star$	15	24	10	0	
	217	43	18			
	$95\star$	13.9	5.2			
Simons Array $[24, 61]$	$150\star$	11.4	3.5	65	30	3000
	220	30.1	2.7			
	27	35.4	93			
	39	24	63			
Simons Observatory - SAT [25]	93 *	2.7	30	10	25	1000
	$145\star$	3	17	10	20	1000
	225	6	11			
	280	14.1	9			
Simons Observatory - LAT [25]	27	73.5	7.4			
	39	38.2	5.1			
	93 *	8.2	2.2	40	1000	5000
	$145\star$	8.9	1.4	40	1000	
	225	21.2	1			
	280	52.3	0.9			
	95 *	5.1	1			
SPT-3G [19, 61, 62]	$150\star$	4.7	1	6	50	5000
	220	12.0	1			

^a AdvACTPol constraints would improve by a factor of 2 if choosing $\ell_{\min} = 60$.

Exp. specifications (PBH)

Experiment	$f_{ m sky}$	ℓ_{\min}	ℓ_{\max}	ν	δP	$ heta_{ m FWHM}$
	- 0			(GHz)	$(\mu \text{K-arcmin})$	(arcmin)
		0	3000	90	7.3	12.1
				100	7.1	10.9
$CO_{r}E$ [45 46]	0.7			115	7.0	9.6
$\operatorname{COIE} [43, 40]$	0.7	Z		130	5.5	8.5
				145	5.1	7.7
				160	5.2	7.0
CMB-S4 [56, 57]	0.69	20	2000	95	2.9	2.2
	0.02	30	3000	145	2.8	1.4
PICO [48, 49]	0.7	2		90	2.1	9.5
			4000	108	1.7	7.9
	0.7			129	1.5	7.4
				155	1.3	6.2
		2	200	89	11.7	35
$L:t_{0}DIDD$ [47]	0.7			100	9.2	29
LiteBIRD [47]	0.7			119	7.6	25
				140	5.9	23
	0.65	30	3000	95	13.9	5.2
Simons Array [53, 54]	0.05			150	11.4	3.5