机器学习在江门中微子实验事例重建中的应用

李紫源 罗武鸣 钱圳 尤郑昀

中山大学 中科院高能物理研究所

on behalf of the JUNO collaboration & Machine Learning group

2021年8月18日

- 江门中微子实验
- JUNO中的几种机器学习重建算法
 - 提升决策树 (BDT)
 - 全连接神经网络 (FC-DNN)
 - 卷积神经网络 (CNN)
 - 图神经网络 (GNN)
- 能量与顶点重建性能
- 总结与展望

Jiangmen Underground **Neutrino Observatory**

- 广东省江门市
- 700 米岩层覆盖
- · 接受来自阳江核电站、 台山核电站的中微子源
- 物理意义:
 - 测定三代中微子质量 顺序
 - 精确测量振荡参数

- 顶部径迹探测器
- 中心探测器 有机玻璃球壳

 - 不锈钢支架
- 光电倍增管 (PMT)
 - 17600 支 20 英寸 PMI
 - 25600 支 3 英寸 PMT
 - 覆盖率78%
- 液体闪烁体 20 千吨
- 水切伦科夫探测器 35 千吨
 - 2400 支 20 英寸 PMT

- JUNO中微子探测方法
 - 使用反β衰变(IBD)探测单个中微子能量
 - 进而测量中微子能谱,进而去推测中微子质量排序
 - 对能量分辨率要求极高

 $ar{
u}_{
m e}+{
m p}^+
ightarrow{
m e}^++{
m n}$

正电子会迅速湮灭在液闪中,随后能量沉积出大量光子 光子将被探测器外侧球面上的 PMT 探测

Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401

• JUNO 探测器建模与事例显示

探测器建模

JUNO 探测器 (左), PMT 排布 (右)

建模与显示可以观察 光子在液闪中的传播

K. Li, Z. You, Y. Zhang, et al., NIMA 908 (2018) 43-48 S. Zhang, J.S. Li, Y.J. Su, et al., NST 32, 21 (2021)

• 软件: - Unity 3D - ROOT Display

Z. You, K. Li, Y. Zhang, et al., JINST 13 (2018) T02002 J. Zhu, Z. You, Y. Zhang, et al., JINST 14 (2019) T01007

• JUNO中的事例重建

- 输入信息
 - 某个时间段内,每个 PMT 上接受到的电荷,与光子的击中时间
- 输出信息
 - 能量沉积 E 大小
 - 能量沉积平均位置(顶点)(X, Y, Z)
- (要求能量分辨率 < 3%)
- (要求顶点分辨率 < 12 cm)

• 重建算法

- 传统算法 (基于物理模型、飞行时间、极大似然法)
- 机器学习 (用数据训练模型,使其具备预测能力)

- 基于机器学习的重建
 - 输入: PMT 的电荷与击中时间、聚合特征
 - 输出/标签:顶点位置(x,y,z)、能量 E
 - 使用机器学习中的回归功能
 - ・机器学习算法:
 - 提升决策树
 - 全连接神经网络
 - 卷积神经网络
 - 图神经网络

- (Boost Decision Tree)
- (Fully Connected Deep Neural Network)
- (Convolutional Neural Network)
- (Graph Neural Network)

Z. Qian, V. Belavin, et al, N.I.M.A, Ser. 1010 (2021) 165527 (Machine Learning group in JUNO)

• 数据集

- 机器学习模型的训练和测试使用的数据来自 JUNO 离线软件 **SNiPER** 蒙卡产生 *T. Lin, J. Zou, et al, J. Phys. Conf. Ser. 898 (2017) 4, 042029*
 - 训练数据集: 5M 个正电子事例, 能量在 0-10 MeV 均匀分布
 - 测试数据集: 11 组×10k 正电子事例, 能量为 0, 1, … 10 MeV
 - 位置分布:均匀的在液体闪烁体中分布
 - **PMT两种效应:**暗噪声(DN)与时间越渡弥散(TTS)人工加入到数据中
 - 四组数据:1.w/TTS&DN,2.w/TTS,3.w/DN,4.w/oTTS&DN

• 数据输入

1. PMT 接受到的时间与电荷

单事例电荷随时间演化

5th ns

2. 聚合特征

- 第一击中时间的平均值与方差
- 总的电荷
- 电荷的重心 (x, y ,z), (r)

附录见更多信息

• 提升决策树 (BDT)

• 输入:总电荷数,电荷(x,y,z)、(r)的重心,第一击中时间的平均值和方差

四层树的示意图

- 提升决策树:多个树被按顺序构建,多个树共同组成最终模型 - 每一个子树将学习上一个树学习到的残差差去修正错误
- 最终输出由所有树输出结果相加而得
 模型最大树深为 10,树的个数约150

• 全连接深度神经网络 (FC-DNN)

• 输入:总电荷数,电荷(x,y,z)、(r)的重心,第一击中时间的平均值和方差

神经元与神经网络示意图

- 全连接神经网络由一系列 fw 线性函数作为 "神经元" 排列组成
- 其构筑理念受到生物大脑神经网络功能的运作启发

为了发挥所选聚合特征输入的全部潜力,我们对多个超参数进行了优化:

网络的的深度与宽度

- 深7, 宽32
- 激活函数
- 权重初始化
- 学习策略
- 层标准化
- 优化器
- 批大小
- 学习率 - 损失函数

● 卷积神经网络 (CNN)

- 输入: PMT 的电荷、第一击中时间
- 卷积神经网络引入卷积层处理一维或多维数据,最常用于分析视觉图像
- ・卷积层:
 - 有效特征保留 - 权值共享
- ・池化层:
 - 数据降维
 - 防止过拟合
- ・全连接层
 - 增加拟合能力 - 结果输出

两大特点:

- 1. 能够有效的将大数据量的图片降维成小数据量
- 2. 能够有效的保留图片特征,符合图片处理的原则

• 输入优化与网络优化

- 根据JUNO探测器 结构设计图像映射 方法
- 将击中信息转化为 二维图像

PMT击中电荷图像

网络:

- 结合时下热门的 "ResNet-50" 网 络
- 引入残差学习的概念,进一步加深
 网络,充分利用输入的信息

ResNet-J——JUNO重建使用的网络之一

图神经网络 (GNN)

• 输入: PMT 的电荷、第一击中时间,但重新分配到球面上 3072 片菱形像素中(HEALPix 算法)

- 图神经网络: 球面上的像素可作为图神经网络中的节点; 卷积可以在图上实现
- ・ **优**势:
 - 球面符合探测器几何构造
 - 不存在经过 2 维投影到平面的变形

・ 劣势:

Radius K=5

- 图神经网络计算效率不如 2D CNN - 像素不多

GNN-J—

—JUNO重建使用的网络之一

• 重建性能的评估

- 测试集:一批模型训练中没有见过的数据; 11 组×10k 正电子事例, 能量为 0, 1, ... 10 MeV
- 训练完成后,我们将测试集交给模型并分析结果:
 - 预测值用高斯拟合,标准差给出分辨率
- 顶点:能量沉积的平均位置

$$ec{\mathbf{r}}_{ ext{dep}} = rac{\sum\limits_{i}^{N_{ ext{s}}}ec{\mathbf{r}}_{ ext{s},i}\,E_{ ext{dep},i}}{\sum\limits_{i}^{N_{ ext{s}}}E_{ ext{dep},i}}$$

能量:液闪中沉积能量 - 发现在样本能量边缘的能量 重建,结果没法被高斯拟合

- 顶点重建的在半径方向上的**分辨率**与偏差:
 - 复杂模型更有效;简单模型无法提供 好的顶点重建表现
 - CNN中网络优化策略有效,更深的网络性能更好;
 - 卷积神经网络在 1.022 MeV 处分辨率 为 10 cm,偏差小于 2 cm,满足实验 要求

- 能量重建的在半径方向上的**分辨率**与偏差:
 - 简单模型能提供相当的表现
 - 复杂模型能获得更好的表现
 - 卷积神经网络在 1.022 MeV 处分辨率小于 3%,满足实验要求

• 计算性能

模型	预测速度, sec/100k events	训练参数个数	参数所占内存, MB	训练时间 , min/1M events
提升决策树 BDT	<1	最大树深为 10 树个数约150	17	5
全连接神经网络 FCDNN	<1	6625	0.073	1000
卷积神经网络 VGG-J	155	2.6×10 ⁷	100	1543
卷积神经网络 ResNet-J	235	3.8×10 ⁷	146	840
图神经网络 GNN-J	110	3.5×10⁵ 数据预处理时间不包括在	4.2	265

2021/8/18

• 总结与展望

- 在 JUNO 实验的顶点和能量重建上实现了多种机器学习方法
 - 简单模型:提升决策树 BDT, 全连接深度神经网络 FC-DNN
 - 复杂模型:平面卷积神经网络 2D CNN, 图神经网络 GNN
- 机器学习方法在能量和顶点重建上能满足实验要求
 - 顶点:10 cm @ 1.022 MeV, 偏差小
 - 能量: <3 % @ 1.022 MeV, 偏差小
- 机器学习方法具有高速重建的特点
 - 简单模型:上千事例/秒/CPU核
 - 复杂模型:上百事例/秒/GPU卡

展望:

提升性能:优化模型,球面的机器学习方法具有提升空间(GNN-17613)
 增强可行性:研究刻度数据训练方法、迁移学习等方法,使模型不完全依赖于蒙卡数据

• 模型总结

模型	输入	特点	图示
BDT	7 个聚合特征	简单、快	Yes No Intercent of the second of the
FCDNN	7 个聚合特征	简单、快、深	$\begin{array}{c} \text{input} & \text{indeen} & \text{Output} \\ \text{layer} & \text{layer} & \text{layer} \\ \end{array}$
VGG-J	17613 个 PMT (电荷与击中时间)	利用全部测量信息	Convolutional Block
ResNet-J	17613 个 PMT (电荷与击中时间)	进一步加深网络	$\begin{bmatrix} x \\ y \\ y \\ z \\ z$
GNN-J	球面 3072 个像素 (PMT的电荷与击中时间)	球面输入、球面卷积	Nside = 16 f = 128 f = 128

• 暗噪声与时间越渡弥散的影响

顶点重建 z 方向的重建分辨率与偏差(ResNet-J 模型)

• 能量重建受暗噪声(DN)影响更多

• 顶点重建受时间越渡弥散(TTS)影响更多