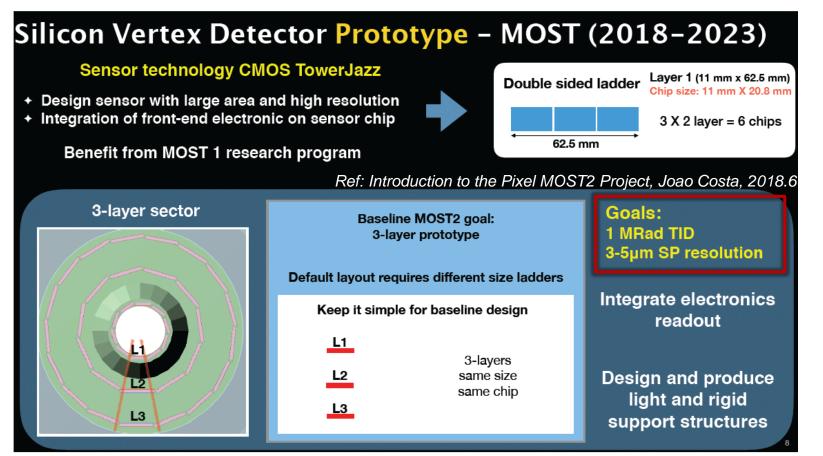


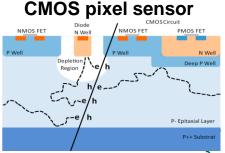
中國科學院為能物服為完備 Institute of High Energy Physics Chinese Academy of Sciences

Development of TaichuPix prototypes for the CEPC vertex detector

Zhang Ying


On behalf of the CEPC MOST2 Vertex detector design team 2021-8-17

Outline


- Project motivation and TaichuPix chip overview
- Small scale prototypes design and test results
- Full size chip design
- Summary

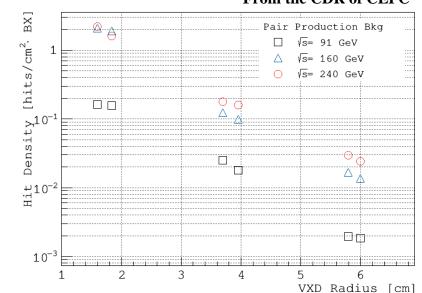
MOST2 project requirements on pixel chip

Motivation for TaichuPix chip design

- > Large-scale & full functionality pixel chip
- Fit to be assembled on ladders with backend Elec. & DAQ

Main specs of the full size chip for high rate vertex detector

Bunch spacing

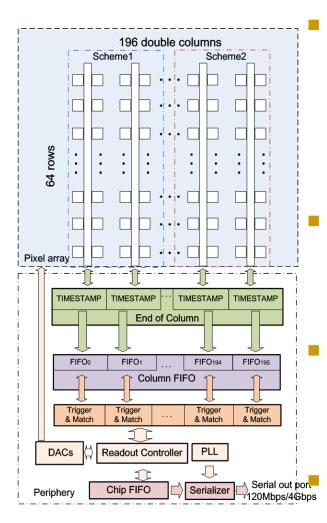

- Higgs: 680 ns; W: 210 ns; Z: 25 ns
- Meaning 40M/s bunches (same as the ATLAS Vertex)

Hit density

 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

Cluster size: 3pixels/hit

- > Epi-layer thickness: ~18 μm
- > Pixel size: $25 \ \mu m \times 25 \ \mu m$


From the CDR of CEPC

CP

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<= 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 Mrad	Date rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns for 98% efficiency	Chip size	~1.4 cm×2.56 cm

TaichuPix architecture

Similar to the ATLAS ITK readout architecture: "column-drain" readout

- > Priority based data driven readout, zero-suppression intrinsically
- Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
- > Dead time: 2 clk for each pixel (50 ns @40MHz clk)

Two parallel pixel digital schemes

- > ALPIDE-like: Readout speed was enhanced for 40MHz BX
- FE-I3-like: Fully customized layout of digital cells and address decoder for smaller area

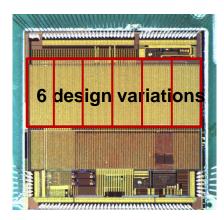
2-level FIFO architecture

- > L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface

Trigger readout

- > Make the data rate in a reasonable range
- > Data coincidence by time stamp, only matched event will be readout

Outline


- Project motivation and TaichuPix chip overview
- Small scale prototypes design and test results
- Full size chip design
- Summary

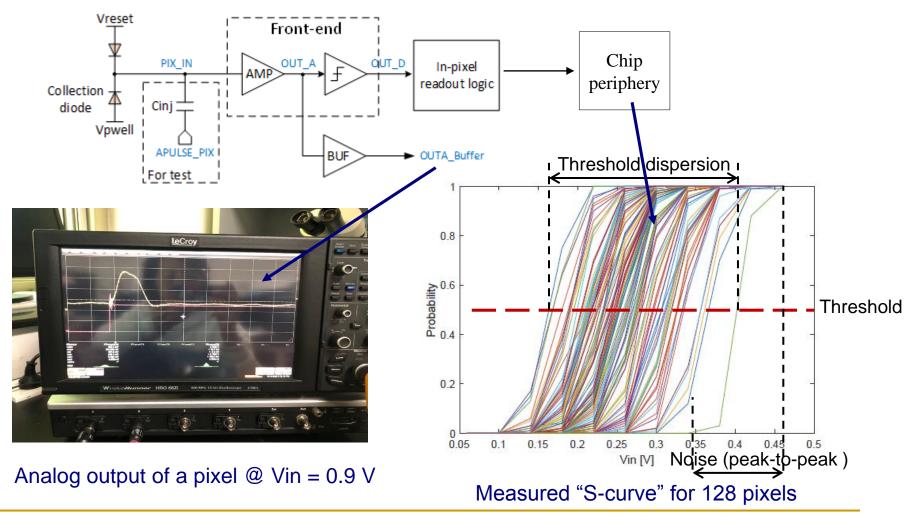
TaichuPix small prototypes overview

TaichuPix-1 Chip size: 5 mm \times 5 mm Pixel size: 25 μ m \times 25 μ m

 $\begin{array}{l} \mbox{TaichuPix-2} \\ \mbox{Chip size: 5 mm} \times 5 \mbox{mm} \\ \mbox{Pixel size: 25 } \mbox{\mu m} \times 25 \mbox{\mu m} \end{array}$

Two MPW chips were fabricated and verified

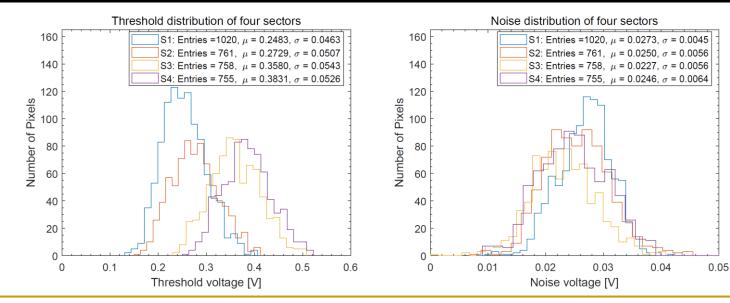
- > TaichuPix-1: 2019.06~2019.11
- TaichuPix-2: 2020.02~2020.06


Chip size 5 mm×5 mm with standalone features

- In-pixel circuitry:
 - Continuously active front-end
 - Two digital schemes, with masking & testing config. logics
- > A full functional pixel array (64×192 pixels)
- Periphery logics
 - Fully integrated logics for the data-driven readout
 - Fully digital control of the chip configuration
- > Auxiliary blocks for standalone operation
 - High speed data interface up to 4 Gbps
 - On-chip bias generation
 - Power management with LDOs
 - IO placement in the final ladder manner
 - Multiple chip interconnection features included

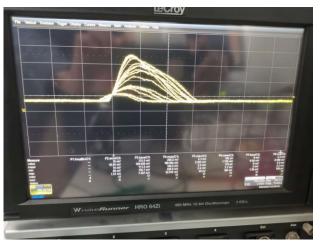
Electrical test

 Electrical performance verified by injecting external voltage pulses into pixel front-end

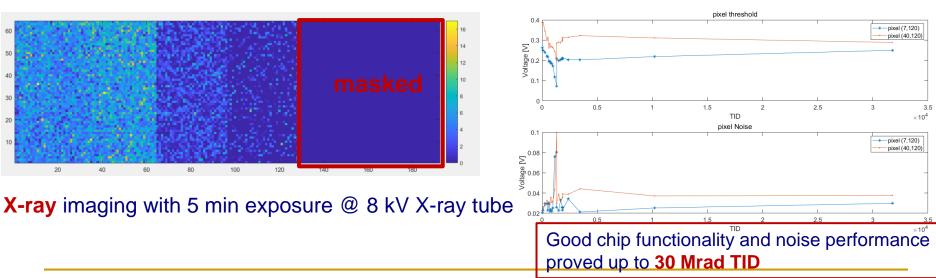


Performance of threshold and noise of TaichuPix2

Bias setting: ITHR = 6.2 nA, VSUB = 0 V


> Threshold can be tuned by changing ITHR (a global current bias)

Chip4	Threshold Mean (e-)	Threshold rms (e-)	Temporal noise (e-)	Total equivalent noise (e-)
S1	272.9	50.9	30.0	59.1
S2	299.9	55.7	27.5	62.1
S3	393.4	59.7	24.9	64.7
S4	421.0	57.8	27.0	63.8


TaichuPix response to radioactive

Functionality of TaichuPix1&2 proved by various tests

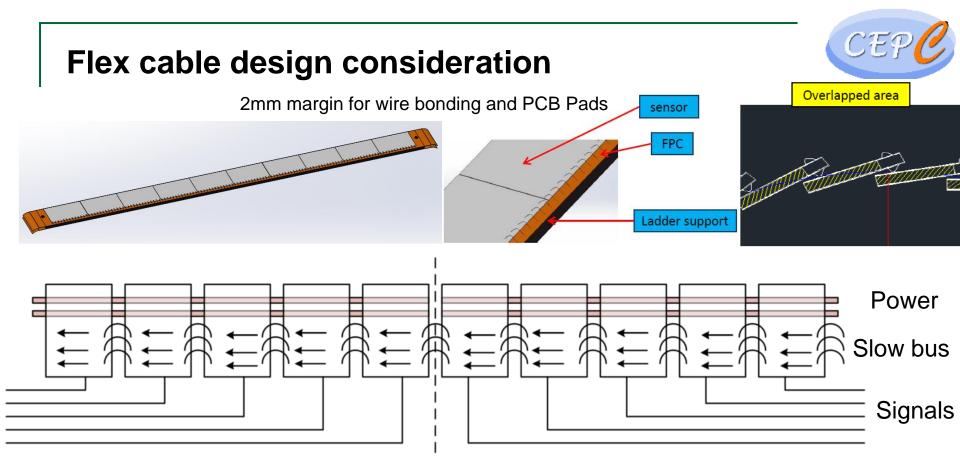
Analog output of a pixel response to X-ray tube

第十三届全国粒子物理学术会议, 2021-8-17

OUTA under Sr-90 injected 1.6r 1.5 1.4 1.3 OUTA(V) 1.2 1.1 0.9 0.8 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 Time [s]

Analog output with ⁹⁰Sr exposure

Outline



- Project motivation and TaichuPix chip overview
- Small scale prototypes design and test results
- Full size chip design
- Summary

Overview of the full size engineering run

- Pixel array 1024*512
- 2. Periphery
- DAC & Bias generation
- Data interface
- 5. LDO (test blocks)
- Chip interconnection features
- Scribe-able top power connection features
- Process: 180 nm CMOS Imaging Sensor process (7 metal layers)
- Pixel cell copied exactly from MPW + scaled logic with new layout
 Periphery + debugged/improved blocks + enhanced power network

Design goals & considerations for the Flex PCB

- Minimum material budget
 - Minimum dead zone extension, limited height of PCB
 - Minimum set of signals on Flex
 - Slow buses to go on chip area by chip interconnection buses
 - Robust power supply
- Manufacturability

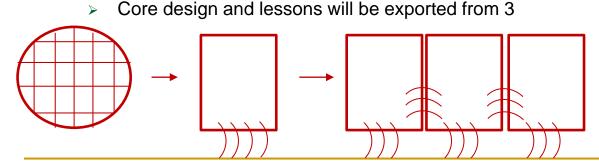
CEPC

Testability design & test plan consideration

- All test features reserved, while the connected IOs will decrease at diff stages depending on chip test & study results
 - > Analog probe signals at the top part, accessible from the top pads
 - > When mounted on ladder, only minimum self test possibilities can be reserved

1. Probe Card design for the wafer test

For all the pads at both sides


2. Single chip test board design

> Designed with all the test features for the chip functional study

3. Multiple chip test board for the ladder debugging

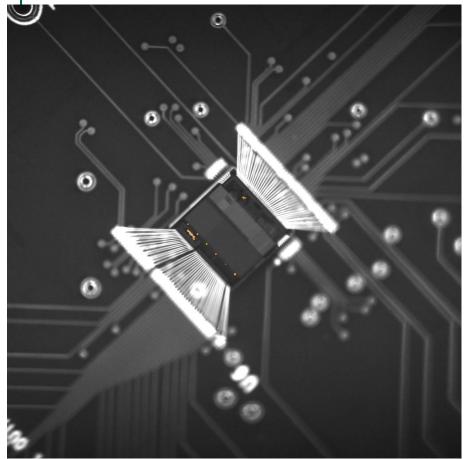
- > Designed following the same manner as the ladder but on PCB
- > Signals and power supplies will be limited just with the ladder's dimension
- > Extra test signals can be connected to the extended area, to help debugging

4. The real flex cable design for the ladder

Summary

- TaichuPix small prototypes were fully verified and preparing to submit the full size tape-out
 - > Full signal chain & functionality verified with both electrical & radioactive test
 - > TID performance satisfied with CEPC's requirement with a large headroom
 - > Full size chip design finished

Recent plan

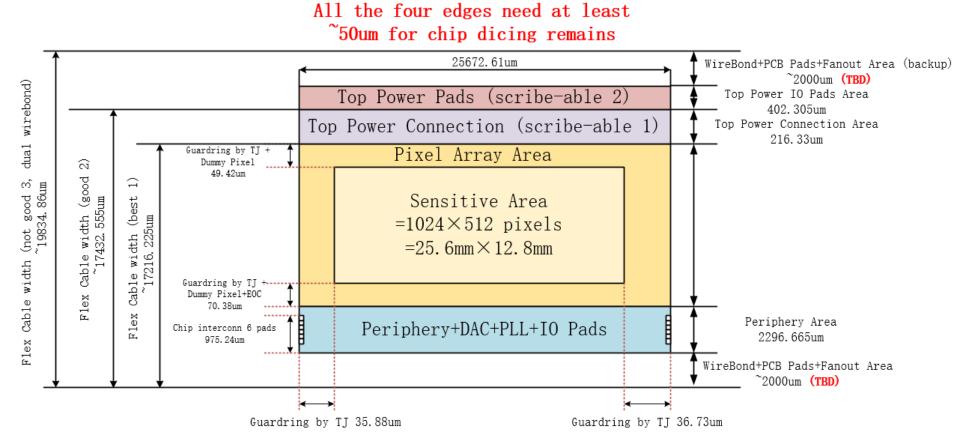

- > Design will be submitted for the engineering run
- > Preparation for the chip test (probe card, test PCB, flex cable ...)

Thank you for your attention!

Backup

Chip Power consuming test

- The EMMI (Emission Microscope) test showed the hot points were exactly as expected
 - > quiet pixel array & periphery = no leakage point


- CEP
- Tcpx2 chip current consuming tested of 210mA (380mW@1.8V)
- Almost agreed with simulation
 - > PLL@trigger speed: 306mW
 - Read by triggerless but at 160Mbps
 - Two PLLs in Tcpx2
 - Analog biased at fastest: 15mW (192*64 pixel array)
 - With 16 probe buffers
 - > Periphery@trigger speed: 90mW

Full size chip dimension

Test of the data interface

Measure

value

mean

max

sdev

num

status SDA Jitte

value

status

value

SDA Eve

P1:freg(C1)

255.2 MHz

1 8142 GHz

14.389e+3

Tj(1e-12)

123.27 ps

EveHeight

479.8 mV

447.550 MHz

1 1076 GHz

1.036750 GHz

P2:ampl(C1)

> 889.8 mV

> 903.732 mV

> 850.4 mV

> 979.1 mV

> 26.016 mV

4.84 ps

EveOne

404.1 mV

P3thase(C1)

< -460.9 mV

< -541.6 mV

< -421.1 mV

< 20.392 mV

173

Dj(sp

54.26 ps

EveZero

-431.1 mV

< -466.151 mV

P4/ton(C1) P5/ermsi(Eve)

BitRate

EveAmpl

835.2 mV

162 ns

16.2 ps

16.2 ps

16.212 ps

428.9 mV

437.581 m\

> 349.8 mV

> 483.3 mV

> 14.592 mV

173

3.3600 Gbit/sec

P6:eppi(Eve)

115 0 ps

115.034 ps

115.0 ps

115.0 ps

7.15 ps

EveWidth

200.3 ps

P7:Q(Eve)

7 0496

7 0496

7 0498

51 ps

EveCross

50.01 %

7.049625

P8:ndcd(Eve)

18e-3

18e-3

DCD

1 ps

EveAvgPwr

-11.4 mV

18e-3

18.14e-3

P9:enni/Eve)

DD

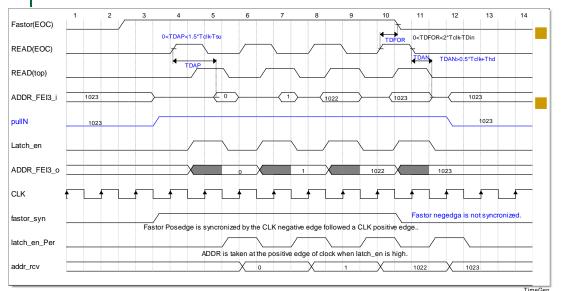
51 ps

1.524591e+6 914.388622e-15

MaskHits

P10--

EveBER



P12--

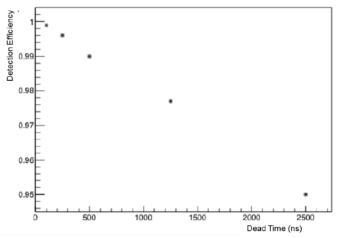
@3.36Gbps

- Concerning the highest data rate for triggerless at 4Gbps, at least 2 SER interface ports needed
- Thus bit rate @2.24Gbps is safe and power optimized

Readout & Periphery

Designed for low power

- Only the hit (fastor) info & address are fannout from the pixel array
- \forall Only the read (acquisition) signal is fanned in to the pixel array
 - Clock & time stamp are localized only in the EOC, different from FE-I3


Optimized @ CEPC hit rate

- Some common time stamp recorded for a full double column
 - > For low power
 - Column is hit every 8.3us / pixel is readout in 2 clocks (50ns) / cluster size 3 pixels
 - ▶ Dead time 500ns 98% trigger efficiency

Time stamp recorded when Fastor is valid

Each pixel readout by 2 clocks (50ns)

- ♦ Worst delay ~ 25ns
 - Sim by 512 rows (full size)
 - > TDA: read sent –addr come
- Address latch @ 37.5ns
 - ▶ @1.5 clock
 - > Enough headroom for all corners

