
Remarks on the composite nature of the light scalar

mesons f0(980) and a0(980)
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Motivation

The nonperturbative meson-meson interaction and the related scalar meson is

a topic of great importance

The unflavored scalar mesons below 1 GeV

→ like f0(500)/σ,K∗(800)/κ, f0(980), a0(980)

The compositeness can give quantitative description of the inner structure of a

resonance/molecular
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Formulation of the compositeness relation and decay width

Compositeness and elementariness relation [1]

X + Z = 1 (1)

X and Z called the compositeness and elementariness.

Bound state: Z and X are positive real numbers, allowing probabilistic interpretations

Resonance: Z and X are usually complex numbers.

For example: The probability of finding the physical deuteron |d〉 in a bare

elementary-particle state |d0〉, Z = |〈d0|d〉|2. If the deuteron is purely elementary, then

Z = 1. On the contrary, for a purely composite particle made of a proton and a neutron,

Z = 0. [1,2]

[1] S. Weinberg, Phys. Rev. 137, B672 (1965)

[2] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, and A.E. Kudryavtsev, Evidence that the

a(0)(980) and f(0)(980) are not elementary particles, Phys. Lett. B 586, 53 (2004).
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Formulation of the compositeness relation and decay width

Here we will follow Ref. [1], which formulates a probabilistic interpretation of compositeness

relation with only positive and real coefficient for resonance. After the proper unitary phase

transformation of S-matrix, it offers the partial compositeness coefficient for resonance in the

form as

Xi = |γ2
i |
∣∣∣∂Gi (s)

∂s

∣∣∣
s=sP

(2)

compared to the bound state case,

Xi = −γ2
i

∂Gi (s)

∂s

∣∣∣
s=sP

. (3)

where G(s) is the one-loop two-point function.

[1] Z.-H. Guo and J. A. Oller, Phys. Rev. D 93, 096001 (2016), 1508.06400.
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Formulation of the compositeness relation and decay width

For the different imaginary part of p1 and p2, we can define the four different Riemann

Sheets as
Sheet I : Imp1 > 0, Imp2 > 0

Sheet II : Imp1 < 0, Imp2 > 0

Sheet III : Imp1 < 0, Imp2 < 0

Sheet IV : Imp1 > 0, Imp2 < 0

(4)

Riemann Sheet II and III are connected to the physical Reimmann Sheet I below and above the

KK threshold in the real axis, respectively.We have

G II
i (s − iε) = G I

i (s − iε)−
i

4π

√
[s − (m1 + m2)2][s − (m1 −m2)2]

2s
(5)

The notion of s − iε is to distinguish the negative imaginary part. Thus the Sheet I is obtained

with G I
1(s),G I

2(s); the Sheet II is obtained with G II
1 (s), G I

2(s); the Sheet III is obtained with

G II
1 (s), G II

2 (s); the Sheet IV is obtained with G I
1(s), G II

2 (s);
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Formulation of the compositeness relation and decay width

The standard formula for the partial decay width:

Γππ =
|γ1|2p1(m2

P)

8πm2
P

(6)

where pi is the momentum in the rest frame of resonance. The KK threshold is very close to the

resonance mass and the effect of the finite width of f0(980) (around 50 MeV) is not negligible.

Or even, the lower limit of f0(980) mass within the uncertainty region may be smaller than KK

threshold. We will consider the Lorentzian distribution for the resonance mass, and the partial

decay width can be written as

Γ
KK

= |γ2|2
1

16π2

∫ +∞

m1+m2

dW
p2(W 2)

W 2

ΓP

(mP −W )2 + Γ2
P/4

(7)
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Two main equation

We suppose that the total compositeness coefficient of f0(980) can be expressed as the sum

of those for two channels ππ and KK̄ :

X = Xππ + XKK̄ = |γ1|2
∣∣∣∂G1(s)

∂s

∣∣∣
s=sP

+ |γ2|2
∣∣∣∂G2(s)

∂s

∣∣∣
s=sP

(8)

The total decay width of f0(980) is then

ΓP = |γ1|2
p1(m2

P)

8πm2
P

+ |γ2|2
1

16π2

∫ mP+2ΓP

m1+m2

dW
p(W 2)

W 2

ΓP

(mP −W )2 + Γ2
P/4

(9)

Our input parameter of f0(980) is from the dispersive analysis in a model-independent way,

which provide a reliable and accurate determination. [1]

mP = 996± 7 MeV, ΓP = 50+20
−12 MeV (10)

[1] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, and J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011),

1107.1635.
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Results

The compositeness coefficient KK is always much larger than ππ. Moreover, f0(980) couples

much more strongly to KK channel than to ππ

The partial decay width of ππ channel should be larger than the one for KK . In other words,

smaller X (X ∼ 0.4) is preferred. Other components contribute to the elementariness, like

qq, compact qqq̄q̄, or their superposition.

For X =0.8, 0.6, 0.4 in Riemann Sheet II and III, we calculate the couplings(columns 3,4),

corresponding partial decay width Γi (columns 5,6) and individual compositeness coefficients

Xi (columns 7,8) for each channel.
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Given the branching ratio value Γππ/(Γππ + Γ
KK

). Let Γππ/(Γππ + Γ
KK

) = b and

Γππ + Γ
KK

= ΓP , the value of compositeness Xππ and X
KK

will be given by

Xππ =
8πbΓPm

2
P

p1(m2
P)

∣∣∣∣∂G1(s)

∂s

∣∣∣∣
s=sP

(11)

X
KK

=
16π2(1− b)∫ mP+2ΓP

m1+m2
dW p(W 2)

W 2
1

(mP−W )2+Γ2
P
/4

∣∣∣∣∂G2(s)

∂s

∣∣∣∣
s=sP

(12)
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Results

In the Sheet II, the range of the total compositeness varies from 0.2 to 0.45, while in the

Sheet III the range becomes 0.3 to 0.65. From the “molecular” point of view, it is also more

suitable for interpreting f0(980) as a resonance locating at the Sheet III.

Combining the ratio of Γππ/(Γππ + Γ
KK

), as well as Γππ + Γ
KK

= ΓP , the corresponding values

are uniquely predicted in the II and III Riemann Sheet.

[1] B. Aubert et al. (BaBar), Phys. Rev. D 74, 032003 (2006), hep-ex/0605003.

[2] J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997), [Erratum: Nucl.Phys.A 652, 407õ409

(1999)], hep-ph/9702314.

[3] W. Wetzel, K. Freudenreich, F. X. Gentit, P. Muhlemann, W. Beusch, A. Birman, D. Websdale, P.

Astbury, A. Harckham, and M. Letheren, Nucl. Phys. B 115, 208 (1976).
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Results of a0(980)

A recent coupled-channel analysis of antiproton-proton annihilation data is presented in Ref.

[1], where the pole parameters and partial decay width of a0(980) are discussed; In Sheet II,

mP = 1004.1± 6.67 MeV, ΓP = 97.2± 6.01 MeV, Γ
KK
/Γπη = 13.8± 3.5 % (13)

and in the Sheet III,

mP = 1002.4± 6.55 MeV, ΓP = 127.0± 7.08 MeV, Γ
KK
/Γπη = 14.9± 3.9 % (14)

[1] M. Albrecht et al. (Crystal Barrel), Eur. Phys. J. C 80, 453 (2020), 1909.07091.
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Results of a0(980)

[1] M. Albrecht et al. (Crystal Barrel), Eur. Phys. J. C 80, 453 (2020), 1909.07091.

[2] P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).

[3] A. Abele et al., Phys. Rev. D 57, 3860 (1998).
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Flatté parameterization

We consider the propagator of a resonance following a Flatté parameterization [1]

D(E) = E − Ef + i
Γ1

2
+

i

2
g2

√
mKE (15)

We look for the zero of D(ER) = 0 to determine the resonance pole position ER . We have

the equation:

ER − Ef + i
Γ1

2
= −

i

2
g2

√
mKE (16)

We have to distinguish two cases according to the sign of mKg
2
2 /16− Ef ,

i)
mKg

2
2

16
− Ef > 0

ER = Ef −
i

2
Γ1 −

1

8
mKg

2
2 −

√
mKg

2
2

4

((
mKg

2
2

16
− Ef

)2

+
Γ2

1

4

) 1
4

exp

(
i

2
arctan

Γ1/2

mKg
2
2 /16− Ef

)
(17)

ii)
mKg

2
2

16
− Ef < 0

ER = Ef −
i

2
Γ1 −

1

8
mKg

2
2 −

√
mKg

2
2

4

((
Ef −mKg

2
2

16

)2

+
Γ2

1

4

) 1
4

exp
i

2

(
π − arctan

Γ1/2

Ef −mKg
2
2 /16

)
(18)

[1] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, and A.E. Kudryavtsev, Evidence that the a(0)(980)

and f(0)(980) are not elementary particles, Phys. Lett. B 586, 53 (2004).
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Flatté parameterization

We introduce the auxiliary angle φ defined by

φ = arctan
Γ1/2

Ef −mKg
2
2 /16

(19)

For the discussions we write down explicitly the expressions for the cases i) and ii) for the

mass and width of the resonance as obtained from the pole position

Case i)

MR = −
mKg

2
2

16
−

1

2
ΓRcot

φ

2
−

Γ1

4

(
tan

φ

2
+ cot

φ

2

)
ΓR = Γ1 +

1

2

√
mKg

2
2 Γ1|tan

φ

2
|

(20)

Case ii)

MR = −
mKg

2
2

16
−

1

2
ΓR tan

φ

2
+

Γ1

4

(
tan

φ

2
+ cot

φ

2

)
ΓR = Γ1 +

1

2

√
mKg

2
2 Γ1cot

φ

2

(21)
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Flatté parameterization

We need to fix fix Γ1, φ and g2

Case i)

MR = −
mKg

2
2

16
−

1

2
ΓRcot

φ

2
−

Γ1

4

(
tan

φ

2
+ cot

φ

2

)
ΓR = Γ1 +

1

2

√
mKg

2
2 Γ1|tan

φ

2
|

(22)

Finally, if X = X1 + X2, MP and ΓP are the inputs, then we have the extra equation or branching

ratio Γ1/ΓR

X =
8πM2

RΓ1

q1

∣∣∣∣∂G1(s)

∂s

∣∣∣∣
s=sP

+ |γ2
2 |
∣∣∣∣∂G2(s)

∂s

∣∣∣∣
s=sP

(23)
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Flatté parameterization

We have the g2
√
mKE is the width to the KK channel at energy E. Then,

γ2
2

√
(2mK + MR)2 − 4m2

K

16π(MR + 2mK )2
→ g2

√
mKMR (24)

Therefore,

γ2
2 =

16π(MR + 2mK )2√
4 + MR/mK

≈ 32πm2
Kg2 (25)

where at the end we taken MR � 2mK (because the resonance mass is near the two-kaon

threshold and this is taken as energy reference).
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Results of Flatté parameterization
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Summary

We predict the couplings, compositeness coefficients and partial widths of the ππ and KK

channels.

We also roughly discuss the compositeness of the resonance a0(980) under the assumption of

molecular interpretation.

We use the Flatté parameterization to discuss the compositeness coefficients.

The compositeness concept, as a quantitative examination of the inner structure of a

resonance/molecular is very crucial to promote a step forward the understanding of hadron

structure.
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THANK YOU
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