WIMP search using the full PandaX-II exposure

Qiuhong Wang

Fudan University

On behalf of the PandaX collaboration

PandaX-II Experiment for Dark Matter Search

Dark Matter & PandaX-II

Dark Matter (DM)

Galactic rotation curve

Bullet Cluster

 Dark matter really exists in the Universe.

Cosmic Microwave Background

Ordinary matter

accounts for 5%, dark matter makes up 27%.

Dark Matter Candidates

- Weakly Interacting Massive Particle (WIMP)
- mass ~ 100 GeV, "WIMP miracle"
- WIMP is one of the most promising dark matter candidates!

Detection of WIMPs

- collider search
- direct detection
- indirect detection

direct

PandaX Experiment

PandaX-I	PandaX-II	PandaX-4T	PandaX-III
120kg LXe	580 kg LXe	4 ton LXe	200kg-1T gas
DM	DM	DM	Xe-136
2009-2014	2015-2019	ongoing	0ν2β
		00	future

PandaX-II Detector and Dual-Phase TPC

PandaX-II Data Sets

- 2019.06 "End-of-Run" completed
- Total exposure: 131.7 ton-day
 - Run 9: 79.6 days
 - Run 10: 77.1 days
 - Run 11, span 1: 96.4 days
 - Run 11, span 2: 147.9 days
- Refined algorithms
 - Position reconstruction
 - Detector response model
 - Improved background evaluation

New Position Reconstruction

- Trained with evenly distributed ^{83m}Kr calibration events
- Turn off 7 malfunctioned PMTs
 - 5 top and 2 bottom
- Data-driven position reconstruction: photon acceptance function
 - Analytically parameterized PAF (old)
 - Simulation-based PAF: optical simulation of the detector (new)

New Response Model

- Calibration data
 - ER events: tritium and ²²⁰Rn
 - NR events: AmBe
- NEST 2.0 based response model
 - · with data quality cut efficiency

ER Run 9 ER Run 10/11 NR Run 9 NR Run 10/11

Background Sources

Source	Evaluation		
material ER	from MC simulation, benchmarked by high energy spec		
¹²⁷ Xe	35.5 day lifetime, decay away in Run 11		
³ Н	Introduced after Run 9, fitted from data		
²²² Rn	Depletion effect from measurement		
⁸⁵ Kr	Not a constant due to air leakage in Run 11		
neutrons	Data-driven estimation		
surface events	Data-driven extrapolation		
accidental events	vents Newly trained BDT discriminator		

²²²Rn Background

- Major ER contribution from ²¹⁴Pb
 - Charged Rn progenies attracted to the cathode with negative HV
 - Less contribution in fiducial volume: "depletion effect"
- New method to evaluate ER event rate from ²¹⁴Pb
 - The depletion ratio measured from ²²²Rn calibration (end-of-run)
 - Interpolation from ²¹⁸Po and ²¹⁴Bi
- PandaX-II 214 Pb level: 10µBq/kg

Activity [Bq]

Surface background

- Surface events
 - Mostly ER events from Rn plate-out
 - Losing S2 on the surface, shifting below ER region
- Data-driven extrapolation from outside FV region

JINST 14 (10): C10039, 2019

3.5

2.5

0.5

20

40

ER region

NR region

Surface events

80

100

60

log₁₀(S2/S1)

Neutron Background

- New evaluation based on high energy gammas (HEGs)
 - Neutron events associated with HEGs (neutron capture, nuclear de-exciation)
 - Scale factor (neutron events / HEGs) from MC simulation with HEGs included
 - Tested in AmBe calibration data

SCIENCE CHINA Physics, Mechanics & Astronomy (2019)

• PandaX-II full exposure: 3.0±1.5 events in WIMP signal region

Background Budget for Low Energy Events

• Compared with Run 10, more background contributions in Run 11

Item		Run 9	Run 10	Run 11, span 1	Run 11, span 2	
	85 Kr	1.19 ± 0.2	0.18 ± 0.05	0.20 ± 0.06	0.40 ± 0.07	
Flat ER	222 Rn	0.19 ± 0.10	0.17 ± 0.02	0.19 ± 0.02	0.19 ± 0.02	
Components	220 Rn	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	
(mDRU)	ER (material)	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10	
	Solar ν	0.01	0.01	0.01	0.01	
	$^{136}\mathrm{Xe}$	0.0022	0.0022	0.0022	0.0022	
Total flat ER (mDRU)		1.61 ± 0.24	0.57 ± 0.11	0.73 ± 0.08	1.03 ± 0.08	
127Xe (mDRU)		0.14 ± 0.03	0.0069 ± 0.0017 < 0.0001			
³ H (mDRU)		0	0.17			
Neutron (mDRU)		0.0022 ± 0.0011				
Accidental (event/day)		0.014 ± 0.004				
Surface (event/day)		0.041 ± 0.008		0.063 ± 0.0013		

Unblinding Data and Results of the WIMP Search

- WIMP
 - NRs, separated from the ER band
- Searching window
 - S1 [3, 45] PE
 - Fiducial volume 329 kg
- Blind analysis for Run 11
- Total 1220 events, 38 below_ NR median
 - Consistent with background expectation (best fit with)

dR/dE example with different WIMP masses, $\sigma = 1 \times 10^{-31} cm^2$

	ER	Accidental	Neutron	Surface	Total fitted	Total observed
Run 9	381.1	2.20	0.77	2.13	387 ± 23	384
below NR median	2.7	0.46	0.37	2.12	5.6 ± 0.5	4
Run 10	141.7	1.08	0.48	2.66	145.9 ± 16	143
below NR median	1.7	0.24	0.22	2.65	4.8 ± 0.6	0
Run 11, span 1	216.5	1.04	0.60	6.24	224 ± 22	224
below NR median	4.2	0.32	0.32	6.22	11.1 ± 1.1	13
Run 11, span 2	448.2	1.60	0.92	9.58	460 ± 35	469
below NR median	8.26	0.50	0.50	9.54	18.8 ± 1.7	21
Total	1187.9	5.9	2.77	20.6	1217 ± 60	1220
below NR median	16.8	1.52	1.42	20.5	40.3 ± 3.1	38

The best fitting of a 400 GeV WIMP

Event Distributions

- Distribution of events with high WIMP hypothesis likelihood (400 GeV)
 - 3 events in Run 9 and 7 events in Run 11

 Best-fit for m_χ=400 GeV 5.7 WIMP events -> σ_{χn} =4.4x10⁻⁴⁶ cm²
Test with a background-only scenario, p-value of 0.17 -> 0.96σ

Constraints on WIMP Model

- Spin-independent Interaction
- Exclusion limits on SI
 - for 30 GeV, 2.2x10⁻⁴⁶ cm², 1.7 WIMPs
 - for 40 GeV, 2.5x10⁻⁴⁶ cm², 11.6 WIMPs
 - for 400 GeV, 1.6x10⁻⁴⁵ cm², 18.4 WIMPs
- 54 ton-day exposure data generated a best exclusion curve for DM detection in 2017;
- The no-downward fluctuation of DM candidates leads to the worse limit in final analysis.

Summary of PandaX-II Experiment

 We established a data model for the analysis of PandaX-II which yields a good performance.

• PandaX reached to the forefront of DM search in recent years!

 No WIMP candidate was observed in the published data of PandaX-II.

More DM candidates are being searched with PandaX-II now!