

何苗 中国科学院高能物理研究所 中国物理学会高能物理分会第十三届全国粒子物理学术会议 2021.8.16-20 青岛→线上

中微子研究历史

Recent solar neutrino results

θ_{12} and Δm_{21}^2 constrains by solar experiments and KamLAND

Observation of CNO neutrinos by Borexino

No CNO hypothesis disfavored at 5 σ

Recent v_{μ} disappearance results

T2K: 295 km

Patrick Dunne @ Neutrino 2020

NOvA: 810 km

Alex Himmel @ Neutrino 2020

IceCube-DeepCore: Atm. neutrinos

Summer Blot @ Neutrino 2020

θ_{23} and $|\Delta m^2_{32}|$ constrains by atmospheric and accelerator experiments

Parameter	Δm ² ₃₂	sin²θ ₂₃
Precision	1.4%	4.9%

PDG2020

θ_{13} in reactor experiments

Latest results of reactor experiments

News from Neutrino 2020

Double Chooz, Thiago Bezerra

Reno, Jonghee Yoo

Daya Bay, Jiajie Ling

中微子物理实验研究进展

0.8

Preliminary

0.6

Daya Bay Mission Completed

- Precision measurement of $sin^2 2\theta_{13}$ and $|\Delta m^2_{ee}|$
- Precision measurement of reactor antineutrino flux and spectrum → two anomalies
- Most stringent limit on light sterile neutrinos

Ceremony on Dec. 12, 2020. Final results in 2022. Precision of $\sin^2 2\theta_{13} 2.7\%$.

θ_{13} in accelerator experiments

T2K EPS-HEP2015

- Indication of Electron NeutrinoAppearance from an Accelerator-producedOff-axis Muon Neutrino Beam, 2011. 2.5σ
- **Evidence** of Electron Neutrino Appearance in a Muon Neutrino Beam, 2013. $>3\sigma$
- Observation of Electron Neutrino
 Appearance in a Muon Neutrino
 Beam, 2014. >5σ

Global comparison

Mass ordering and CP violation

Accelerator neutrinos: asymmetry between v_e and \bar{v}_e appearance for both MO (matter effect) and CP

Atmospheric neutrinos: v_{μ} and \bar{v}_{μ} disappearance

 v_{μ} and \bar{v}_{μ} disappearance, v_e and \bar{v}_e appearance for MO (matter effect)

Reactor neutrinos:

 $\bar{\nu}_e$ disappearance for MO (independent on θ_{23} and CP phase)

SK data disfavors Inverted Hierarchy at 71.4-90.3% CL_s (was 81.9-96.1% in 2018) Also prefers: 1st θ_{23} octant and $\delta_{CP} \sim 3/2\pi$

Yasuhiro Nakajima (Super-K) @ Neutrino 2020

T2K

 $1D \, \delta_{CP} \\ \bullet 35\% \text{ of values excluded at } 3\sigma \text{ marginalized across hierarchies} \\$

• CP conserving values (0, π) excluded at 90% but π not quite at 2 σ

Patrick Dunne @ Neutrino 2020

T2K-II

- Current exposure: ~3.6×10²¹ POT
 - T2K target: 7.8×10^{21} POT
- T2K-II: 20×10^{21} POT (3σ to exclude sin($\delta_{CP}=0$))

Mathieu Guigue @ WIN 2021

NOvA

NOvA future

Future

- Expected to run through 2025
- Run plan: 50-50 neutrinos/antineutrinos
- Potential 3-5 σ sensitivity to hierarchy
- Possible > 2σ sensitivity to CP violation
- Proposed accelerator improvements and test beam program enhance NOvA's reach
- Improvements in simulation will improve analysis robustness
- Joint T2K-NOvA analysis coming soon

Future projects for Mass Ordering

We would like to be convinced the neutrino mass ordering by consistent results from several different technologies/methods with > 3 σ CL from each exp.

- Matter effect with Atm or Acc neutrino: HyperK, DUNE, INO, ORCA, PINGU
- Interference between Δm_{31}^2 and Δm_{32}^2 with reactor neutrino: JUNO

Hyper-Kamiokande

F. Di Lodovico, G. Catanesi @NeuTel2021

- Construction started 2020.
- Data taking from 2027.
- J-PARC neutrino beam will be upgraded from 0.5 to 1.3 MW

2020/12 First six PMTs delivered to Kamioka

- ~ 4sigma in 10yrs by combination of beam and atm-nu
 - While Atm-nu only 2~4 sigma

DUNE

• DUNE's neutrino source: LBNF beam, from US Fermi National Lab (FNAL)

MO sensitivity

IceCube Upgrade

Tom Stuttard @ NeuTel 2021

The IceCube Upgrade

- \$30M extension to IceCube
 - Funded, planned deployment in 2022/3
 - Schedule under review due to COVID-19
- 700 multi-PMT sensors
 - Densely packed in 2 Mton core
- Improved detector/ice calibration

KM3NeT-ORCA

- Aart Heijboer @ NeuTel 2021 8 115 detection units NMO sensitivity [σ] KM3NeT Normal Ordering - 6+1 in operation 6 Increase to 31 by end 2021 θ₂₃=48° 2 data taking period [year] 2470m Multi-site, deep-sea neutrino telescope • Selected by ESFRI roadmap Single collaboration, Single technology 2 700 **Oscillation Research** 57 institutes with Cosmics In the Abys: 9 3400m 200 З KM3NeT 2.0 Letter of Intent WARCAwe COLA ARCA Digital Optical Module (DOM) Astroparticle Research with Cosmics In the Abys Multi-PMT: 31 x 3" PMTs Detection Unit (DU) Gbit/s on optical fiber Connection nodes of _ 18 DOMs _ KM3NeT 2.0: Letter of Intent http://dx.doi.org/10.1088/0954-3899/43/8/084001 +Algeria ultidisciplinar Positioning & timing Low-drag design observatory emso J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001
 - 中微子物理实验研究进展

Prospective of CP

JUNO: a multipurpose neutrino experiment

Project

- 20 kton liquid scintillator, 3%@1MeV energy resolution, 700 m underground
- Approved in **2013**, construction started in **2015**, operation in **2023**

Physics

- Determine mass ordering
- Precision measurement of oscillation parameters
- Astronomical and geo- v
- Proton decay and exotics

Reactor neutrino oscillation

- Mass ordering: 3σ for 6 years data \rightarrow 4σ with accelerator constrain of Δm^2_{32} *J. Phys. G 43, 030401 (2016)*
- **Oscillation parameters**: precision of $\sin^2 \theta_{12}, \Delta m^2_{21}, \Delta m^2_{31} < 0.6\%$ *arXiv:2104.02565*

Updated analysis ongoing

- Less reactor cores ↓
- New optical model, higher light yield ↑
- Higher PMT detection efficiency ↑
- \bar{v}_e spectrum by TAO \uparrow
- Lower overburden ↓
- Better muon veto strategy ↑

Rich physics potentials

Civil construction

- Underground experimental hall almost ready
- Detector installation starts in October

Surface buildings

Water pool

Detector main structure

- **Φ40.1 m** stainless steel truss
 - 30×23 H-beams
 - 140k screws
 - 590 connecting bars
 - Production 95% finished, shipping to JUNO site

Pre-assembly and welding

- **Φ35.4 m** acrylic sphere
 - 263 acrylic panels up to $3 \text{ m} \times 8 \text{ m} \times 120 \text{ mm}$
 - Flat panels 100%, thermal forming 80% finished
 - Transparency >96% in water
 - Radiopurity < 1 ppt
 - Bonding onsite

Pre-assembly of two layers

PMTs and electronics

- Multiple types of PMTs
 - 5000 Hamamatsu 20-inch dynode-PMTs
 - 12612+2400 NNVT 20-inch MCP-PMTs
 - 25600 HZC 3-inch PMTs
- PMT instrumentations ongoing
 - 20-inch PMTs 100% finished
 - 3-inch PMTs 35% finished
- Readout electronics: underwater
- Reliability: <1% failure for 6 years (20-inch PMT + electronics)

Optical coveragePMT20-inch PMT: 75.2%underwater3-inch PMT: 2.7%implosion test

Liquid scintillator

- JUNO LS recipe, similar to Daya Bay, optimized with a Daya Bay detector:
 LAB + 2.5 g/L PPO + 3 mg/L Bis-MSB state
- No Gd-doping
- Attenuation length: >20 m @ 430 nm
- Low radioactive backgrounds
 - 10⁻¹⁵ g/g for reactor neutrinos
 - 10⁻¹⁷ g/g for solar neutrinos
 (0.008 g dust in 20 kton LS)

Online Scintillator Internal Radioactivity Investigation System

Cosmic muon veto

Water Cherenkov detector

- 2400 20" MCP-PMTs
- 35 kton ultra pure water with circulation
- Temperature $21 \pm 1^{\circ}$ C.
- Radon in water requirement: < 0.2 Bq/m³, prototype reached 0.01 Bq/m³

Top Tracker

Recycling the plastic scintillators
 from OPERA Target Tracker

- Provide model-independent reference spectrum for JUNO
- Tons fiducial mass Gd doped LS
- Water tanks and Plastic Scintillators for shielding and muon veto
- ~30 m to one of the 4.6 GW_{th} reactor cores
- NPE ~ 4500/MeV, full coverage
- Iow-T (-50 °C) \rightarrow Iow dark noise
- σ_E/E ~2% @1MeV
- Prototype 1-1 before end 2021

- Neutrinos discovery and oscillation
 - 3-flavor neutrinos discovery in 1956-2000
 - Neutrino oscillation confirmed in 1998
 - Amplitudes (mixing angles) and frequencies (mass splitting) well understood and determined at a few percent precision
- Promising solutions to 3×3 mixing matrix in 10-20 years
 - Sub-percent precision of oscillation parameters
 - − 3σ determination of mass ordering and CP violation in late 2020s
 → possibly 5σ in early 2030s
- Remain questions
 - Neutrino mass and neutrinoless $\beta\beta$ decay (JUNO upgrade ...)
 - Astronomy and astrophysics (THU, SJTU, IHEP ...)
 - Sterile neutrino

backup

Discovery of neutrinos

1956: electron neutrinos

Frederick Reines (Nobel Prize in 1995)

Pauli: "Thanks for message. Everything comes to him who knows how to wait."

Clyde L. Cowan

Savannah River Exp.

1962: muon neutrinos

Leon M. Lederman, Melvin Schwartz and Jack Steinberger (Nobel Prize in 1988)

Melvin Schwartz and a 10-ton spark chamber in Brookhaven National Laboratory.

2000: tau neutrinos

Explore the universe with neutrinos

Measurement of solar neutrinos since 1960s

Ray mand Davis

Observation of supernova burst neutrinos in 1987

Neutrino oscillation

Solar neutrino problem

Measurement / expectation ≈ 1/3 → "solar neutrino problem"

Observed solar neutrino flux

Pioneering experiment: Homestake (Ray Davis)

SNO: detect charge current and neutral current with 1,000 ton heavy water

Arthur B. McDonald (Nobel Prize in 2015)

Solar neutrinos do not disappear, but oscillate to other flavors.

Atmospheric neutrinos problem

$$\pi \to \mu + \mathbf{v}_{\mu},$$

$$\mu \to e + v_e + \mathbf{v}_{\mu}. \implies v_{\mu}/v_e \approx 2$$

- SuperK: 50 kton water
- ν_µ: disappear with propagation distance
 - Driven by $v_{\mu} \rightarrow v_{\tau}$ oscillation (θ_{23} and Δm_{32}^2)

Takaaki Kajita

(Nobel Prize in 2015)

- In 1980s, $v_{\mu}/v_e < 2 \rightarrow$
- "atmospheric neutrino problem"

1998 100 e-like μ-like p < 2.5 GeV/c 40 80 7777 30 60 $\Box \Box \Box$ 20 40 10 20 0 0 -0.6 -0.2 -0.6 -0.2 0.2 0.6 -1 0.2 0.6 cosΘ cosΘ $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(1.27\Delta m^2 L/E\right)$

9

Artificial neutrinos oscillation

K2K: first long-baseline

accelerator experiment

 KamLAND: 1,000 ton liquid scintillator, ~180 km to >50 reactors

1.4 1.2 1.0 Nobs/Nexp -PARC 0.8 at Tokai ILL 0.6Savannah River **KEK** Bugev Rovno 0.4 Goesger Krasnoyarsk Palo Verde 0.2 Chooz KamLAND 0.0 10^{5} 10^{2} 10^{3} 10^{1} 10^{4} Distance to Reactor (m) 100Efficiency (%) Events **Disappearance** of $\overline{\nu}_e$. 80Ē 2003 60E 40 K2K: detected 56 v_{μ} **Consistent** to solar 8 while expected 80.1. 250 neutrinos oscillation. Events / 0.425 MeV 200F $C(\alpha,n)^{16}O$ 6 best-fit Geo Ve **Consistent to** best-fit osci. + BG 150 best-fit Geo V. Δ atmospheric 100 -2003 2 neutrinos oscillation. 50 θ_{12} and Δm^2_{21} E, rec θ_{23} and $|\Delta m^2_{32}|$ E_p (MeV)

Discovery of non-zero θ_{13}

3-v oscillation status

🗸 Known

- $\sin^2 \theta_{12}$, $\sin^2 \theta_{23}$, and $\sin^2 \theta_{13}$ (~ 4%, 6%, 3%)
- $|\Delta m_{31}^2|$ and Δm_{21}^2 (~ 1%, 3%)

- Unknown

- Mass ordering (MO, sign of Δm_{31}^2)
- Octant of θ_{23} (>, < or = $\pi/4$?)
- Leptonic CP-violating phase δ

Global fit, Mariam

- **CP**: asymmetry between v_e and \bar{v}_e appearance
- MO: coherent forward scattering (matter effect)

 $\mathcal{A} \equiv \frac{P - \bar{P}}{P + \bar{P}}$

Prospective of mass ordering

Large synergy between reactor (JUNO) and accelerator/atmospheric experiments due to disagreement on Δm_{31}^2 in the wrong MO hypothesis