

Recent measurements on open heavy flavor at STAR

Xiaolong Chen (陈小龙) University of Science and Technology of China

Why heavy flavor?

• $m_{c,b} >> T_{QGP}, \Lambda_{QCD}$

陈小龙

- Produced early dominated through initial hard scatterings
- Cross sections calculable with pQCD
- Heavy quarks are ideal probes to study Quark-Gluon Plasma

Outline of open heavy flavor measurements at STAR

- Energy loss in QGP
 - \rightarrow D⁰, D⁺ R_{AA}/R_{CP}
- Hadronization
 - → Λ_c/D^0 , D_s/D^0
- Mass dependence of Energy loss
 - → b/c→ electrons R_{AA}
- Transport coefficients
 - ➡ D⁰ v₂
 - → b/c→ electrons v_2

STAR detector

$|\eta| < 1$ with full azimuthal coverage

Time Projection Chamber (TPC)

- Momentum determination
- ➡ PID through dE/dx

Time of Flight (TOF)

- → PID through $1/\beta$
- ➡ Timing resolution:~85 ps

Barrel Electromagnetic Calorimeter (BEMC)

- ➡ electron PID through p/E
- Triggering on high-p_T electrons

Heavy Flavor Tracker (HFT)

 Excellent DCA resolution in both rφ and z directions:
 ~30 μm at p = 1.5 GeV/c

第13届全国粒子物理学术会议

STAR detector

$|\eta| < 1$ with full azimuthal coverage

Time Projection Chamber (TPC)

- Momentum determination
- ➡ PID through dE/dx

Time of Flight (TOF)

- → PID through $1/\beta$
- Timing resolution:~85 ps

Barrel Electromagnetic Calorimeter (BEMC)

- ➡ electron PID through p/E
- Triggering on high-p_T electrons

Heavy Flavor Tracker (HFT)

 Excellent DCA resolution in both rφ and z directions:
 ~30 μm at p = 1.5 GeV/c

Λ_c/D^0 ratio

- + Significant enhancement of Λ_c/D^0 compared to PYTHIA/fragmentation baseline
- + The Λ_c/D^0 ratio is comparable with light flavor baryon-to-meson ratios
- Consistent with charm quark hadronization via coalescence

D_s/D^o ratio

- ◆ Significant enhancement of D_s/D⁰ ratio compared to PYTHIA and p+p @ 7 TeV
- Comparable to Pb+Pb @ 5.02 TeV
- Models incorporating coalescence with enhanced strangeness production qualitatively describe data

$b/c \rightarrow electrons R_{AA}$

◆ R_{AA} (*c*→*e*) < R_{AA} (*b*→*e*) (~3σ at 3-7 GeV/c)

陈小龙

Consistent with mass hierarchy of parton energy loss

$D^0 v_2$ and $b/c \rightarrow$ electrons v_2

- ◆ D⁰ v₂ is similar to those of light hadrons
 - Charm quarks may be thermalized
- C→e v₂ consistent with D⁰ measurement folded to decayed electrons
- Non-zero b→e v₂ with significance > 3σ
- Duke calculations are consistent with data considering non-flow

Summary

- Significant enhancements of Λ_c/D⁰, D_s/D⁰ ratios in Au+Au w.r.t.
 p+p
 - Important role of coalescence in charm hadronization
- Hierarchy of b/c \rightarrow e R_{AA} in Au+Au 200 GeV
 - Mass dependence of parton energy loss (ΔE_c > ΔE_b) in the QGP
- D⁰ v₂ is similar to those of light hadrons
 - Charm quarks may be thermalized
- Non-zero b \rightarrow e v₂ with significance > 3 σ