Mass splitting of vector meson and spontaneous spin polarization under rotation

Minghua Wei,
Mei Huang,
Yin Jiang

Outline
Introduction
NJL model in co-rotating frame
tetradmetric and spin comnection The 3D phase structure

Minghua Wei, Mei Huang, Yin Jiang Institute of High Energy Physics, CAS

August 16, 2021
arxiv:2011.10987
The 13th National Conference on Particle Physics @ Qingdao, Shandong

Outline

1 Introduction

Minghua Wei, Mei Huang, Yin Jiang

Outline
Introduction
NJL model in co-rotating frame
tetrad.metric and spin connection
The 3D phase structure

Meson mass
Scalar meson mass Vector meson mass

Conclusion
2 NJL model in co-rotating frame

- tetrad,metric and spin connection
- The 3D phase structure

3 Meson mass

- Scalar meson mass
- Vector meson mass

4 Conclusion

Introduction

Non-central collision \Longrightarrow vorticity and strong magnetic field

Minghua Wei, Mei Huang, Yin Jiang

Outline

Introduction
NJL model in co-rotating frame
tetrad.metric and spin connection The 3D phase structure

Meson mass
Scalar meson mats
Vector meson mass
Conclusion

Non-central Collisions

(a) Yin Jiang,Phys.Rev.C94(2016)

(C) Nucl.Phys.A 803 (2008)

NJL model in co-rotating frame

Rotating frame: tetrad and spin connection

$$
\begin{equation*}
e_{\mu}^{a}=\delta_{\mu}^{a}+\delta_{i}^{a} \delta_{\mu}^{0} v_{i} \quad e_{a}^{\mu}=\delta_{a}^{\mu}-\delta_{a}^{0} \delta_{i}^{\mu} v_{i} \tag{1}
\end{equation*}
$$

Relation between metric and tetrad $g_{\mu \nu}=\eta_{a b} e^{a}{ }_{\mu} e^{b}{ }_{\nu}$

$$
\begin{equation*}
\Gamma_{\mu}=\frac{1}{4} \times \frac{1}{2}\left[\gamma^{a}, \gamma^{b}\right] \Gamma_{a b \mu} \quad \Gamma_{a b \mu}=\eta_{a c}\left(e_{\sigma}^{c} G_{\mu \nu}^{\sigma} e_{b}^{\nu}-e_{b}^{\nu} \partial_{\mu} e_{\nu}^{c}\right) \tag{2}
\end{equation*}
$$

$G^{\sigma}{ }_{\mu \nu}$ is the usual Christoffel connection determined by $g_{\mu \nu}$ The Lagrangian of the two-flavor NJL model in the co-rotating frame is given by

$$
\begin{align*}
\mathcal{L}= & \bar{\psi}\left[i \bar{\gamma}^{\mu}\left(\partial_{\mu}+\Gamma_{\mu}\right)-m\right] \psi \\
& +G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]-G_{V}\left[\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}+\left(\bar{\psi} \gamma_{\mu} \gamma_{5} \psi\right)^{2}\right] \tag{3}
\end{align*}
$$

The 3D phase structure

$$
\begin{align*}
\Omega(T, \mu ; M, \tilde{\mu}, \omega)= & \int d^{3} \mathbf{r}\left\{\frac{(M-m)^{2}}{4 G_{S}}\right. \\
& -\frac{(\mu-\tilde{\mu})^{2}}{4 G_{V}}-\frac{N_{c} N_{f}}{16 \pi^{2}} T \sum_{n} \int d k_{t}^{2} \int d k_{z}\left[J_{n}\left(k_{t} r\right)^{2}+J_{n+1}\left(k_{t} r\right)^{2}\right] \tag{4}\\
& \times\left[\ln \left(1+e^{\left(E_{k}-\left(n+\frac{1}{2}\right) \omega-\tilde{\mu}\right) / T}\right)+\ln \left(1+e^{-\left(E_{k}-\left(n+\frac{1}{2}\right) \omega-\tilde{\mu}\right) / T}\right)\right. \\
& \left.\left.+\ln \left(1+e^{-\left(E_{k}+\left(n+\frac{1}{2}\right) \omega+\tilde{\mu}\right) / T}\right)+\ln \left(1+e^{\left(E_{k}+\left(n+\frac{1}{2}\right) \omega+\tilde{\mu}\right) / T}\right)\right]\right\}
\end{align*}
$$

Minghua Wei, Mei Huang, Yin Jiang

Outline

Introduction
NJL model in co-rotating frame
tetrad,metric and spin connection The 3D phase structure

Meson mass

Figure 1: The 3D phase structure for chiral transition on $(\overline{\bar{T}}, \mu, \bar{\omega}) \begin{gathered}\text { hac } \\ 5 / 11\end{gathered}$

Random phase approximation (RPA)

Quark propagator and onloop polarization function under rotation

$$
\begin{align*}
& S\left(\tilde{r} ; \tilde{r^{\prime}}\right)=\frac{1}{(2 \pi)^{2}} \sum_{n} \int \frac{d k_{0}}{2 \pi} \int k_{t} d k_{t} \int d k_{z} \frac{e^{i n\left(\phi-\phi^{\prime}\right)} e^{-i k_{0}\left(t-t^{\prime}\right)+i k_{z}\left(z-z^{\prime}\right)}}{\left[k_{0}+\left(n+\frac{1}{2}\right) \omega\right]^{2}-k_{t}^{2}-k_{z}^{2}-M^{2}+i \epsilon} \\
& \times\left\{[[k _ { 0 } + (n + \frac { 1 } { 2 }) \omega] \gamma ^ { 0 } - k _ { z } \gamma ^ { 3 } + M] \left[J_{n}\left(k_{t} r\right) J_{n}\left(k_{t} r^{\prime}\right) \mathcal{P}_{+}\right.\right. \tag{5}\\
&\left.+e^{i(\phi-\phi)^{\prime}} J_{n+1}\left(k_{t} r\right) J_{n+1}\left(k_{t} r^{\prime}\right) \mathcal{P}_{-}\right] \\
&\left.-i \gamma^{1} k_{t} e^{i \phi} J_{n+1}\left(k_{t} r\right) J_{n}\left(k_{t} r^{\prime}\right) \mathcal{P}_{+}-\gamma^{2} k_{t} e^{-i \phi^{\prime}} J_{n}\left(k_{t} r\right) J_{n+1}\left(k_{t} r^{\prime}\right) \mathcal{P}_{-}\right\}, \\
& \Pi_{s}(q)=-i \int d^{4} \tilde{r} T r_{s f c}[i S(0 ; \tilde{r}) i S(\tilde{r} ; 0)] e^{i q \cdot \tilde{r}}, \tag{6}
\end{align*}
$$

where $\mathcal{P}_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma^{1} \gamma^{2}\right)$ are projection operators Random phase approximation

Full propagator and gap equation

$$
\begin{equation*}
D_{\sigma}\left(q^{2}\right)=\frac{2 G_{S}}{1-2 G_{S} \Pi_{s}\left(q^{2}\right)}, \quad 1-2 G_{S} \Pi_{s}(0, \tilde{\nu})=\underline{0}, \tag{7}
\end{equation*}
$$

Scalar Mesons

Minghua Wei, Mei Huang, Yin Jiang

Outline

Introduction
NJL model in co-rotating frame
tetradmetric and spin comnection The 3D phase structure

Figure 2: scalar meson mass as a function of angular velocity at different chemical potentials and temperatures.

Vector Mesons

The polarization functions of charged and neutral ρ mesons are supposed to be the same under rotation

$$
\begin{equation*}
\Pi^{\mu \nu, a b}(q)=-i \int d^{4} \tilde{r} T r_{s f c}\left[i \gamma^{\mu} \tau^{a} S(0 ; \tilde{r}) i \gamma^{\nu} \tau^{b} S(\tilde{r} ; 0)\right] e^{i q \cdot \tilde{r}} \tag{8}
\end{equation*}
$$

The analysis of the Lorentz structure suggests the tensor can be decomposed according to its polarization directions

$$
\begin{equation*}
\Pi_{\rho}^{\mu \nu}=A_{1}^{2} P_{1}^{\mu \nu}+A_{2}^{2} P_{2}^{\mu \nu}+A_{3}^{2} L^{\mu \nu}+A_{4}^{2} u^{\mu} u^{\nu} \tag{9}
\end{equation*}
$$

where

$$
\begin{gather*}
P_{1}^{\mu \nu}=-\epsilon_{1}^{\mu} \epsilon_{1}^{\nu},\left(s_{z}=-1 \text { for } \rho \text { meson }\right), \\
P_{2}^{\mu \nu}=-\epsilon_{2}^{\mu} \epsilon_{2}^{\nu},\left(s_{z}=+1 \text { for } \rho \text { meson }\right), \tag{10}\\
L^{\mu \nu}=-b^{\mu} b^{\nu},\left(s_{z}=0 \text { for } \rho \text { meson }\right) . \\
D_{\rho}^{\mu \nu}\left(q^{2}\right)=D_{1}\left(q^{2}\right) P_{1}^{\mu \nu}+D_{2}\left(q^{2}\right) P_{2}^{\mu \nu}+D_{3}\left(q^{2}\right) L^{\mu \nu}+D_{4}\left(q^{2}\right) u^{\mu} u^{\nu}, \tag{11}
\end{gather*}
$$

where coefficients D_{i} have the RPA summation forms as:

$$
D_{i}\left(q^{2}\right)=\frac{2 G_{V}}{1+2 G_{V} A_{i}^{2}} \quad 1+2 G_{V} A_{i}^{2}=0
$$

Vector Mesons

Figure 3: ρ meson masses as a function of angular velocity at temperature $T=10 \mathrm{MeV}$.
Minghua Wei, Mei Huang, Yin Jiang

Outline
Introduction
NJL model in
co-rotating

frame

tetrad.metric and spin comection
The 3D phase structure

Meson mass

Scalar meson mass

Vector meson mass

Conclusion

Conclusion

Minghua Wei,

1. We have calculated the scalar, pseudoscalar and vector mesons' masses at finite temperature, chemical potential and angular velocity.
2. For the scalar and pseudoscalar cases the mass spectra are controlled by the chiral condensate which is the main mechanism generating the hadron mass in NJL model. 3. At large enough angular velocity the vector condensate vacuum would be preferred and the corresponding effective mass should be zero.

Outline

Thanks for Your Attention!

Introduction
NJL model in co-rotating frame
tetrad.metric and spin connection
The 3D phas

Meson mass
Scalar meson mass
Vector meson mass
Conclusion

