Jet energy loss distributions and gradient tomography in heavy-ion collisions

Yayun He (贺亚运)

Central China Normal University (华中师范大学) South China Normal University (华南师范大学)

Based on:

1. Yayun He, Long-Gang Pang, Xin-Nian Wang, PRL 122, 252302 (2019) 2. Yayun He, Long-Gang Pang, Xin-Nian Wang, PRL 125, 122301 (2020)

> 第十三届全国粒子物理学术会议 August 16, 2021

QGP (quark-gluon plasma): a hot and dense medium predicted by QCD

Fig: made by Chun Shen, https://u.osu.edu/vishnu/category/visualization/

Nucleus collision + Pre-equilibrium + Initial state + QGP evolution + Hadron rescattering + Detection

What properties does the QGP have?

- $m \cdot~$ The most perfect fluid $\,\eta/s pprox (1-2)/4\pi$
- The most vortical fluid $\,\omega/Tpprox 0.001$
- \star The most opaque medium ${\hat q}/T^3pprox 4-8$ K. M. Burke et al. [JET Collaboration], Phys. Rev. C 90, no. 1, 014909 (2014).

How to probe the QGP?

Soft probes: hydrodynamics, ...

Hard probes: large transverse momentum, such as jets, hadrons and heavy flavors

Jet quenching: jet energy loss and transverse momentum broadening due to jet-medium interaction

P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

L. Adamczvk et al. [STAR Collaboration]. Nature 548, 62 (2017)

D. d'Enterria & B. Betz, (2009). 10.1007/978-3-642-02286-9_9.

Jet quenching observables:

 $\checkmark \text{ Inclusive jet nuclear modification factors } R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d\sigma_{AA}^{jet}}{d\sigma_{nn}^{jet}}$

Fig: Inclusive jet nuclear modification factor. ATLAS, Phys. Rev. Lett. 114 (2015),072302 arXiv:1411.2357, ATLAS, Phys. Lett. B 790 (2019) 108, arXiv:1805.05635

Jet quenching observables:

 $\checkmark \text{ Inclusive jet nuclear modification factors } R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d\sigma_{AA}^{jet}}{d\sigma_{pp}^{jet}}$

Fig: Inclusive jet nuclear modification factor. ATLAS, Phys. Rev. Lett. 114 (2015),072302 arXiv:1411.2357, ATLAS, Phys. Lett. B 790 (2019) 108, arXiv:1805.05635 Jet quenching leads to a suppression!

Jet quenching observables:

- Inclusive jet nuclear modification factors
- Gamma-triggered jet transverse momentum imbalance $x_{J\gamma} = p_T^{
 m jet}/p_T^{\gamma}$
- Many more ...

Jet quenching leads to a suppression!

How to extract jet quenching information from experimental data?

Bayesian extraction of jet energy loss distributions

$$rac{d\sigma_{AA}^{
m jet}}{dp_T dy}(p_T,R)pprox N_{
m bin}(b)\int d\Delta p_T\, rac{d\sigma_{pp}^{
m jet}}{dp_T dy}(p_T+\Delta p_T,R)\, W_{AA}(\Delta p_T,p_T+\Delta p_T,R)$$

Da model-independent

$$P(X|Y) = rac{P(Y|X)P(X)}{P(Y)}, Y: data, X: W_{AA}$$

Parameterize:

Μ

$$x=rac{\Delta p_T}{\langle \Delta p_T
angle}$$

$$egin{aligned} &\langle \Delta p_T
angle(p_T) = eta p_T^\gamma \log(p_T) \ &W_{AA}(x) = rac{lpha^lpha x^{lpha - 1} e^{-lpha x}}{\Gamma(lpha)} \end{aligned}$$

Fig: correlations of extracted parameters with 8 millions Monte Carlo Markov Chain (MCMC) samplings

Bayesian extraction of jet energy loss distributions

What can we do with jet quenching?

Gradient tomography of jet guenching

The Boltzmann equation for elastic scattering:

$$k_a \cdot \partial f_a = \sum_{bcd} \prod_{i=b,c,d} \int rac{d^3k_i}{2\omega_i (2\pi)^3} (f_c f_d - f_a f_b) imes |\mathcal{M}_{ab o cd}|^2 rac{\gamma_b}{2} (2\pi)^4 \delta^4 (k_a + k_b - k_c - k_d) \; ,$$

Small angle approximation without flow or drag:

Drift-diffusion equation:

Drift:

$$rac{k^{\mu}}{\omega}\partial_{\mu}f_{a}(ec{k},ec{r})=rac{\hat{q}_{\,a}}{4}ec{
abla}_{k_{\perp}}^{2}f_{a}(ec{k},ec{r})$$

$$\hat{q}_{a} = \sum_{bcd} \prod_{i=b,c,d} \int rac{d^{3}k_{i}}{2E_{i}(2\pi)^{3}} f_{b}(k_{b}) (ec{k}_{a\perp} - ec{k}_{c\perp})^{2} |\mathcal{M}_{ab
ightarrow cd}|^{2} rac{\gamma_{b}}{2} (2\pi)^{4} \delta^{4}(k_{a} + k_{b} - k_{c} - k_{d}) \; ,$$

For constant \hat{q} , one can obtain the analytic solution:

-9

 $f_a(ec{k}_{ot},ec{r}_{ot},t) = 3igg(rac{4\omega}{\hat{a}_{ot}t^2}igg)^2 e^{-(ec{r}_{ot}-rac{ec{k}_{ot}}{2\omega}t)^2rac{12\omega^2}{\hat{q}_at^3}-rac{k_{ot}^2}{\hat{q}_at})}$ $\sqrt{\langle k_{\perp}^2
angle} = \sqrt{\hat{q}t} \qquad \qquad \sqrt{\langle r_{\perp}^2
angle} = t \sqrt{(\hat{q}t/3)}/w$ Diffusion width: $ec{r}_\perp = (ec{k}_\perp/2w)t$

11

Gradient tomography of jet quenching

$$A_N^{ec n} = rac{\int d^3r d^3k f(ec k,ec r) ext{Sign}(ec k\cdotec n)}{\int d^3r d^3k f(ec k,ec r)}$$

The LBT model, $\,p_T>3~{
m GeV/c}$

Summary

- Jet energy loss distributions and averaged jet energy loss can be extracted from experimental data with the state-of-the-art Bayesian analysis.
- On average only a few number of out-of-cone jet-medium scatterings take place when a jet traverses the medium
- The gradient of qhat in the medium leads to jet transverse momentum asymmetry, which can be used to localize initial jet production positions

Outlook

- How to extract jet quenching information, such as the path length dependence of jet quenching, with multiple jet quenching observables from the experimental data?
- How to localize jet production points with machine learning technique?

Thanks for your attention!