Introduction

－Cold nuclear matter effects（CNM）are assumed to be dominant in $p \mathrm{~Pb}$ collisions．
$>$ Nuclear partion distribution function（nPDF）．$R_{i}^{\mathrm{Pb}}\left(x, Q^{2}\right)=f_{i}^{\mathrm{Pb}}\left(x, Q^{2}\right) /\left[\mathrm{A} f_{i}^{p}\left(x, Q^{2}\right)\right]$ ．
＞Other initial／final states effects．
－Open heavy flavor charm pair，and Z boson are used to probe CNM and constrain nPDF at small－x and mid $-x$ region in LHCb $p \mathrm{~Pb}$ collisions．
arXiv：2106．13661

LHCb detector and data set

LHCb is a single－arm general purpose detector at forward rapidity．
－Pseudorapidity acceptance $2<\eta<5, p_{\mathrm{T}}$ down to 0 ．
－Forward（ $p \mathrm{~Pb}$ ）： $1.5<y^{*}<4.0$
－Backward（Pbp）：$-5.0<y^{*}<-2.5$
－Common region： $2.5<\left|y^{*}\right|<4.0$

Prompt D^{0} meson production in $p \mathrm{~Pb}$ at 8.16 TeV

－Decay mode：$D^{0} \rightarrow K^{-} \pi^{+}$\＆c．c．
－D^{0} yields are extracted from $K^{-} \pi^{+}$mass fit．
－Prompt and secondary D^{0} are separated using impact parameter（IP）．

LHCb－CONF－2019－004

R_{FB} increase with increasing p_{T} ： $>$ Low p_{T} ：consistent with 5.02 TeV results and nPDF calculation． ＞High p_{T} ：above nPDF calculation．
R_{FB} decrease with increasing y^{*} ．
－Consistent with nPDF and 5.02 TeV results．

Charm pair production in $p \mathrm{~Pb}$ at 8.16 TeV

－First measurement of charm pair production in heavy－ion collisions．
－Single parton scattering（SPS）vs．double parton scattering（DPS）．

$$
\sigma_{\mathrm{eff}}=\frac{1}{1+\delta_{\mathrm{AB}}} \frac{\sigma^{\mathrm{A}} \sigma^{\mathrm{B}}}{\sigma_{\mathrm{DPS}}}
$$

$$
\mathrm{A}, \mathrm{~B}: D^{0} \text { or } \overline{D^{0}}, \text { e.g. }
$$

$\delta_{\mathrm{AB}}=1$ ，if $\mathrm{A}=\mathrm{B}$ ，else 0
－In $p \mathrm{~Pb}, \sigma_{\text {SPS }}$ is expected to scale with mass number，$\sigma_{\text {DPS }}$ is enhanced compared to mass number．
$>$ Like－sign（LS）（e．g．$\left.D^{0} D^{0}\right)$ ：DPS enrich，uncorrelated．
$>$ Opposite－sign（OS）（e．g．$\left.D^{0} \overline{D^{0}}\right)$ ：SPS enrich，correlated．

PRL 125 （2020） 212001
Double charm hadron invariant mass $m_{D D}$
＞Hints of difference between LS and OS pairs．OS consist with Pythia8．
－Azimuthal angle between the charm hadron pair $\Delta \phi(D D)$
＞Different between LS and OS pairs．
$>$ OS pair favor $\Delta \phi \sim 0$（near side peak），LS pair consist with flat distribution（uncorrelated）． $\sigma_{\text {eff }}$ consist with excepted factor ~ 3 enhancement．

－LS／OS ratio R^{σ} are enhanced in $p \mathrm{~Pb}$ compared to $p p$ ．
－Suggesting DPS／SPS enhanced by a factor ~ 3 ．

Measured $p p$ values JHEP06，141（2012）$y(D)$
PRL 125 （2020） 212001
Prompt $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ ratio in $p \mathrm{~Pb}$ at 8.16 TeV

－Reconstruction via $\chi_{c j} \rightarrow J / \psi \gamma$ ，followed by $J / \psi \rightarrow \mu^{+} \mu^{-}$，selection prompt through pseudo－decay time t_{z} ．
$>$ Converted photons：$\gamma \rightarrow e^{-} e^{+}$reconstructed in tracking system．
$>$ Calorimetric photons：$\gamma \rightarrow e^{-} e^{+}$reconstructed in electromagnetic calorimetric．
－$\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ is larger in $p \mathrm{~Pb}$ than in $p p$ ，although they are consistent with unity within uncertainties．

Z boson production in $p \mathrm{~Pb}$ at 8.16 TeV

The Z production in $p \mathrm{~Pb}$ can be used to probe CNM for $x \sim 10^{-4}$ to ~ 1 at $Q^{2} \sim 10^{4} \mathrm{GeV}^{2}$

LHCb－CONF－2019－003
Data are compatible with theoretical predictions using NNLO pQCD
and NNPDF3．1 for p and nCETQ nPDF for Pb ．
Results are compatible with 5 TeV results from various experiments．

Summary

Prompt D^{0} production and R_{FB} in $p \mathrm{~Pb}$ at 8.16 TeV ．
$>$ Hints an increasing trend at high p_{T} ．
－Charm pair production in $p \mathrm{~Pb}$ at 8.16 TeV ．
$>$ Observes 3 times DPS／SPS enhancement in $p \mathrm{~Pb}$ compared to $p p$ ．
－Prompt $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ ratio in $p \mathrm{~Pb}$ at 8.16 TeV ．
$>\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ consist with unity within uncertainties in in $p \mathrm{~Pb}$ and $p p$
－Z boson production in $p \mathrm{~Pb}$ at 8.16 TeV ．
$>$ compatible with theoretical predictions and 5 TeV results．
More results are on upcoming．
$>D^{+}, D_{s}^{+}$mesons and Λ_{c}^{+}baryon in $p \mathrm{~Pb}$

