

中国物理学会高能物理分会第十三届全国粒子物理学术会议(2021) Hard probe production in *p*Pb collisions at 8.16 TeV Di Yang (d-yang19@mails.tsinghua.edu.cn) On behalf of LHCb collaboration

Introduction

- Cold nuclear matter effects (CNM) are assumed to be dominant in *p*Pb collisions.
 - > Nuclear partion distribution function(nPDF). $R_i^{Pb}(x,Q^2) = f_i^{Pb}(x,Q^2)/[Af_i^p(x,Q^2)].$
 - Other initial/final states effects.
- Open heavy flavor charm pair, and Z boson are used to probe CNM and constrain nPDF at small-x and mid-x region in LHCb arXiv:2106.13661
- In *p*Pb, σ_{SPS} is expected to scale with mass number, σ_{DPS} is enhanced compared to mass number.
 - ≻ Like-sign (LS) (e.g. D^0D^0): DPS enrich, uncorrelated.
 - ▷ Opposite-sign (OS) (e.g. $D^0 \overline{D^0}$): SPS enrich, correlated.

- ➢ Hints of difference between LS and OS pairs. OS consist with Pythia8.
- Azimuthal angle between the charm hadron pair $\Delta \phi(DD)$
 - ➢ Different between LS and OS pairs.
 - ► OS pair favor $\Delta \phi \sim 0$ (near side peak), LS pair consist with flat distribution (uncorrelated).
- $\sigma_{\rm eff}$ consist with excepted factor ~3 enhancement.

• LS/OS ratio R^{σ} are enhanced in *p*Pb compared to *pp*.

 Suggesting DPS/SPS enhanced by a factor ~3.

PRL 125 (2020) 212001

Prompt $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ ratio in *p*Pb at 8.16 TeV

- LHCb is a single-arm general purpose detector at forward rapidity.
- Pseudorapidity acceptance $2 < \eta < 5$, p_T down to 0.
- Forward (*pPb*): $1.5 < y^* < 4.0$
- Backward (Pb*p*): $-5.0 < y^* < -2.5$
- Common region: $2.5 < |y^*| < 4.0$
 - Prompt D^0 meson production in *p*Pb at 8.16 TeV
- Decay mode: $D^0 \to K^- \pi^+$ &c.c.
- D^0 yields are extracted from $K^-\pi^+$ mass fit.
- Prompt and secondary D^0 are separated using impact parameter(IP).

- Reconstruction via $\chi_{cj} \to J/\psi\gamma$, followed by $J/\psi \to \mu^+\mu^-$, selection prompt through pseudo-decay time t_z .
 - \succ Converted photons: $\gamma \rightarrow e^-e^+$ reconstructed in tracking system.
 - > Calorimetric photons: $\gamma \rightarrow e^-e^+$ reconstructed in electromagnetic calorimetric.
- $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ is larger in *p*Pb than in *pp*, although they are consistent with unity within uncertainties.
 - Z boson production in pPb at 8.16 TeV

• The Z production in pPb can be used to probe CNM for $x \sim 10^{-4}$ to ~ 1 at $Q^2 \sim 10^4$ GeV².

5.02 TeV results and nPDF calculation.
➤ High p_T: above nPDF calculation. *R*_{FB} decrease with increasing y*.
➤ Consistent with nPDF and 5.02 TeV results.

Charm pair production in pPb at 8.16 TeV

- First measurement of charm pair production in heavy-ion collisions.
- Single parton scattering (SPS) vs. double parton scattering (DPS).

- Data are compatible with theoretical predictions using NNLO pQCD and NNPDF3.1 for *p* and nCETQ nPDF for Pb.
- Results are compatible with 5 TeV results from various experiments.

Summary

- Prompt D^0 production and R_{FB} in *p*Pb at 8.16 TeV.
- > Hints an increasing trend at high $p_{\rm T}$.
- Charm pair production in *p*Pb at 8.16 TeV.
 - > Observes 3 times DPS/SPS enhancement in pPb compared to pp.
- Prompt σ(χ_{c2})/σ(χ_{c1}) ratio in *p*Pb at 8.16 TeV.
 > σ(χ_{c2})/σ(χ_{c1}) consist with unity within uncertainties in in *p*Pb and *pp*.
- Z boson production in pPb at 8.16 TeV.
- compatible with theoretical predictions and 5TeV results.
- More results are on upcoming.
- > D^+ , D_s^+ mesons and Λ_c^+ baryon in *p*Pb.