

Dark Matter Freeze-out via Catalyzed Annihilation

Chuan-Yang Xing (邢传阳)

C.Y.X, Shou-hua Zhu, Phys. Rev. Lett. 127, 061101.

²/_{Catalyzed freeze-out}

³ A model & phenomenology

4 Summary

PART 01

Introduction

How many dark matter are there in the Universe?

arXiv:1807.06209

Freeze-out: to understand the abundance of dark matter.

Freeze-out: to understand the abundance of dark matter.

- 1. O(1) coupling. (Weakly interacting)
- 2. 100GeV mass. (massive particles)

WIMPs

1. O(1) coupling. (Weakly interacting)

2. 100GeV mass. (massive particles)

1. 0(1) coupling.
 2. 100GeV mass.

WIMPs

Electroweak

Many direct detection experiments are established to search for DM.

PandaX

The null results provide with stringent constraints on WIMPs.

The WIMP Crisis

 m_S [GeV]

A simple Higgs portal model:

$$\Delta {\cal L} = - rac{1}{4} \lambda H^\dagger H \chi^2 \, .$$

5/11

The WIMP Crisis

The WIMP Crisis

PART 02

Catalyzed freeze-out

DM in a Secluded Sector

Can we reproduce correct abundance in a secluded sector?

DM in a Secluded Sector

62

Can we reproduce correct abundance in a secluded sector?

Catalyzed Freeze-out

The Catalyzed Annihilation

Three 2DM \rightarrow 2Med plus two 3Med \rightarrow 2DM effectively deplete two DM particles.

Mediator is not consumed, like a catalyst.

Requirements:

¹/Secluded sector.

²/Long-lived mediator.

³ DM is slightly heavier than Med.

⁴ Annihilation channels.

Requirements:

- ¹/Secluded sector.
- ² Long-lived mediator.
- ³ DM is slightly heavier than Med.
- 4 Annihilation channels.

Features:

- ¹ Polynomially suppressed $n_{\rm DM}$.
- ²/_{MeV} TeV DM mass.
- ³ The freeze-out is late. $x_f \simeq 800$.

⁴ Enhanced indirect detection signals.

Catalyzed Freeze-out

Varying Mass Ratio

When the mass ratio is larger than 1.5, Ωh^2 is rapidly suppressed.

When the mass ratio is close to 2, $4 \rightarrow 2$ process could be dominant.

PART 03

A model & phenomenology

A Dark Photon Model

Dark Photon Model

$$\mathcal{L}_{\rm DS} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} (i D \!\!\!/ - m_{\chi}) \chi,$$

$$\mathcal{L}_{\rm mix} = -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}.$$

 χ : DM A': Mediator

A Dark Photon Model

Dark Photon Model

$$\mathcal{L}_{\mathrm{DS}} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} (i \not D - m_{\chi}) \chi,$$

$$\mathcal{L}_{\mathrm{mix}} = -\frac{\epsilon}{2 \cos \theta_W} F'_{\mu\nu} B^{\mu\nu}.$$

$$\begin{array}{c} \chi: \mathrm{DM} \\ A': \mathrm{Mediator} \\ \mu^{0} & \mu^{0} & \mu^{0} \\ \mu^{0$$

A Dark Photon Model

Dark Photon Model

$$\mathcal{L}_{\mathrm{DS}} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} (i D - m_{\chi}) \chi,$$

$$\mathcal{L}_{\mathrm{mix}} = -\frac{\epsilon}{2 \cos \theta_W} F'_{\mu\nu} B^{\mu\nu}.$$

$$\begin{array}{c} \chi: \mathrm{DM} \\ A': \mathrm{Mediator} \\ \mu^{0} - 10^{-10} \\$$

Summary:

1/WIMP is stringently constrained by direct detections (the WIMP crisis).

2/We proposed novel catalyzed freeze-out paradigm.

3/ The paradigm is realized in the dark photon model.

4 Works to do: 1. new models, 2. kinetic decoupling, 3. entropy dilution, 4. ...

Thanks.

Chuan-Yang Xing

