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Introduction
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◆ Physics motivation drives the required performance of the CEPC sub-detectors

Impact parameter resolution
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◆ High spatial resolution, low material budget and fast readout pixel sensors 

constructed vertex detector required by the flavor tagging



Overview of R&D activities
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◆ Step #1: Optimize the key performances of pixel sensor with current technologies

CMOS pixel sensor

SOI pixel sensor
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◆ Step #2: explore new technologies

➢ 200 nm SOI technology 

➢ 180 nm CMOS technology 

• CPV1/2/3

• JadePix1/2/3/4, MIC4

➢ 3D technology

➢ Advanced process technology: 65nm or below
potentially lower power consumption; smaller pixel size or more in-pixel functionalities 

➢ Stitching CMOS technology: potentially ultra light detector structures

Dr. Yunpeng Lu’ talk today

Dr. Jing Dong’ talk today

On going

• SOI-3D process: CPV4-3D this talk

Spatial resolution: 3-5 μm

Time resolution: 1- 100μs

Power consumption: 50 -100 mW/cm2

Thinning: 50μm for CMOS; 75μm for SOI

Radiation tolerance: ~ 1Mrad

• Contradiction of more in-pixel 

functionalities vs fine spatial resolution

• Sensor & circuits technology could be 

different

• ……



Introduction of SOI-3D process
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5

Device Layer (40nm)

Buried Oxide (200nm)

Substrate (50-500μm)

Sputtered Al Layer 

(200nm) Sandwiched structure of SOI

SOI: Silicon-on-Insulator technology

• Utilize 0.2μm FD-SOI CMOS process by 

lapis Semiconductor Co. Ltd.

SOI pixel detector: monolithic type detector

• High resistivity （>1 kΩ·cm），thick (50-500 μm) 

sensitive layer;  more signal charges

• Fully depleted (high basing voltage); fast collection

• Low power dissipation

• Almost no single event effects (SEE) probability; 

radiation tolerance

3D chip stacking process flow proposed for detectors using in 

High Energy physics Experiments  

@*Ikuo Kurachi，et all, Oct.7,  Vertex 2020

中国物理学会高能物理分会第十三届全国粒子物理学术会议 2021.8.17



Introduction of SOI-3D: design resources
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upper

tier

lower

tier
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◆ Shrinking pixel size always pushed to the physical limit

• 0.35μm CMOS process: ~10 transistors and 6 metal layers, pixel size ~ 20*20 μm2   

@ ALTIMATE for STAR, ~ 2000 - 2014

• 0.18μm CMOS process: ~100 transistors and 6 metal layers, pixel size ~ 26*28 μm2   

@ALPIDE for ALICE, ~ 2014 - 2021

◆ 0.2μm SOI-3D process: ~100 transistors and 5 metal layers in each tier

• lower tier: sensing diode and analog front-end

• upper tier: digital readout

• Pixel size can be cut half without compromise of functionality 

*Credit of the conceptual drawing: Miho Yamada



Introduction of SOI-3D: minimum increase of material
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◆ The bulk of upper tier is removed by wet-etching

• Thickness of upper tier: 260 μm → ~10 μm

• Wet-etching stopped by the box layer automatically, which makes SOI 

quite compatible with 3D integration

◆ Lower tier can be thinned as a conventional sensor

• 75 μm in SOI case and 50 μm in CMOS case (lower tier not necessarily 

an SOI sensor)

* Currently SOI-3D demonstrated on a lower tier of 260 μm thick
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*Credit of the conceptual drawing: Miho Yamada

BOX, Buried Oxide



Introduction of SOI-3D: backside connections
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◆ Backside connection is Through Box Via (TBV)

• 0.32 μm hole which implemented already in the SOI process

• Smaller than Through Silicon Via (TSV) hole by a factor of 10

• Additional metal layer formed for the bonding pad

*Credit of the conceptual drawing: Miho Yamada



Introduction of SOI-3D: frontside connections
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◆ 3 μm diameter cylindrical Au bump

Multiple vertical connections per pixel, necessary and feasible

4 connections per pixel: power/ground, analog signal and comparator output

in the SOFIST4 by KEK, first demonstration of SOI-3D process.

lower pixel         upper pixel               Au bumps

SEM image

Layout of SOFIST4 designed by KEK for 

ILC. Evaluated at 2020
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CPV4-3D: prototype sensor overview
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Layout of CPV4-3D

Upper

Lower

AERD

readout

Hit

D-FF

Control register
Test-EN

Mask
A-Pulse

D-Pulse

Strobe

Amplifier/

Comparator

State

Reset

PDD

Lower tier Upper tier

Division of upper and lower functionalities

➢ Lower tier: PDD sensing diode + amplifier/comparator

➢ Upper tier: Hit D-Flipflop + Control register + AERD 

readout

➢ 2 vertical connections in each pixel: comparator output and 

test switch; 

➢ Analog and Digital power/ground are also separated

Pixel size 17.24×21.04 μm2

Time resolution ~1 μs or ~3 μs in different 

operation mode

Pixel array 128×128

Chip size 4.5mm×4.5mm 

Delivered Nov. 2020
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CPV4-3D: PDD sensing diode system
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◆ Not 3D-specific, but the most active part of study in SOI pixel sensor technology

• Evolution of years’ development: BPW, Nested-wells, Double SOI, and PDD (Pinned Depleted Diode)

◆ All-in-one solution in the sensor part:

• Control back-gate of transistors

• Maximize charge collection efficiency

• Suppress leakage current of Si-SiO2 interface

• Minimize the capacitance of electrode (Cd)

• Shield the capacitive coupling between the sensor and pixel circuit

Schematic view of PDD diode structure. 

CPV4-3D employs the PDD (Pinned Depleted Diode) sensing diode system for charge collection

Composed of several layers of doped structures with different depths interface:

• Sensing node (NS) and the buried n-well (BNW1) form a charge collector;

• BPW1:shielding layer between circuits and the charge collector; 

• BNW2, BPW2, BNW3 form a lateral gradient electrical field, benefit to 

charge collection efficiency;

• High negative voltage is backside applied to obtain a fully depleted substrate.

Detail of PDD structure characterization 

results shown by Dr. Jing Dong’s talk today
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CPV4-3D: Lower tier pixel

12

◆ -4V on the back-gate of MOS transistors required (BPW shown last 

page)  in order to minimize electrode capacitance Cd.

• Vth decreased 70 mV for PMOS and increased 50 mV for NMOS

• Characterized and modeled in HSPICE by KEK

◆ Influence on the front-end assessed

• Current mirror matched and placed in a -4V N-well (Counter-part branch of 

M0, M4, M7)

• The other transistors compensated by proper offset on their bias voltage 

(VCASN e.g.)

• Confirmed by simulation

Pixel schematic of CPV4-3D lower tier. The structure original 

from ALPIDE designed by CERN for ALICE

◆ Lower tier pixel integrate the functions of

• Charge collection;

• Amplification;

• Digitization;

• Threshold tuning;

• Structure for pulse inject test;
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CPV4-3D: Lower tier pixel

13

Leading edge of comparator 

output used for timing < 1μs

Transistor M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

W/L 1.8/8.5 1/0.4 1/0.4 1/5 2/8.05 0.63/4.94 0.63/3 1/5 1/0.4 1/1

◆Transistor size selected according to ALPIDE design* to minimize FPN as a first order approximation

Threshold Gain@Thr Vnoise@Thr ENC

Pre-layout 75 e- 32mV/10e- 4.33 mV 1.34 e-

Post-layout 125 e- 8.6mv/10e- 2.92 mV 4 e-

◆Simulation results of threshold and noise

◆TID radiation enhancement

• Smallest working current path at M5 = 0.5nA, the same order of 

magnitudes with leakage after radiation (TID: ~1-10 Mrad)

• H-gate transistors used for M5 in test pixels for TID

• Compensation of TID-induced Vth shift to be applied on the BPW layer

H-gate NMOS layout used in this design

*Ref: D. Kim et al., 2016 JINST 11 C02042   
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CPV4-3D: upper tier
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*Ping Yang, NIMA 785 (2015) 61-69

1. Lower tier pixel: convert hits information into digital signals

2. Upper tier pixel: Hit D-Flipflop + Control registers (Musk/D_test/A_test/hit_response) 

3. Data-driven readout (Asynchronous Encode Reset Decode*)

• 4 stages AERD in each double column for 128 rows

• 3 stages AERD under matrix for 64 double columns

4. SYNC/FREEZE generation block: outside the matrix

• Continuous readout mode

• Triggered readout mode

128 * 128 pixels

3 stages AERD under matrix
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Continuous readout mode:

• Strobe == 1;

• Timing by falling edge ~ 1μs resolution

• New hits are freeze while reading

Triggered readout mode:

• Strobe as gate signal;

• Timing by trigger ~ 3μs resolution

• Read after trigger

Data readout structure (simplified) of CPV4-3D

14-bit output for fired pixel address information
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CPV4-3D: layout implementation 

3D bump

21.04 μm

1
7
.2

4
 μ

m

Single pixel

Layout of 2*2 pixels in upper tier

Layout of 2*2 pixels in lower tier

3D bump positions in 2*2 pixels of upper and lower tier (Metal_1 only). 

2 bumps for each pixel (Comparator output & test switch )

◆ A lot of efforts to minimize the layout size:  21.04 μm * 17.24 μm

• Upper tier: 88 transistors for in-pixel control registers; 

66 transistors for a single stage of AERD;

• Lower tier:  Compromise between noise and transistor size;

Y-axis mirrored, sensitive input node protected                

against the output node to minimize the crosstalk

88 

transistors.
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Summary and outlooks
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Exploration of SOI-3D has started with the first prototype of CPV4-3D

◆Targeting on the full specs of pixel sensors: 

➢ Spatial resolution: pixel size ~ 17×21 μm2   (~1/2 area of 26*28 μm2 )

➢ Time resolution: ~ 1μs;

➢ Power dissipation: ~50mW/cm2;

➢ Material budget: could be thinned down to (75+10) μm; or possibly to (50+10) μm；

➢ Radiation tolerance: TID tolerance enhanced design;  initially less SEE benefits from SOI process.

◆Sensors have just received; lower/upper tier separate test is preparing;

◆To examine the scheme, implementation and yield of SOI-3D;

◆2 ~3 MPW run planned in 5 years
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backups



Dummy 3D bumps

 Excluded area for the dummy 3D bumps 

 The pixel matrix

 The p-stop of guard ring

 The alignment marks
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◼ Dummy 3D bumps, to relieve the mechanical stress of upper tier

◼ Generated automatically in the user-designated area

dummy 3D bumps avoids UBM and Masking ZC4

Alignment marks



Design for test
 Signal and power access to the chips

 Conventional IO pad equipped on both lower and upper 

chips, accessible before 3D integration

 Functional IO always stacked up with dummy IO to 

avoid conflicts of buffers

 Internal signal waveform are routed out of test 

pixels and buffered for oscilloscope observation

 Internal node OUT_A and OUT_D

 Two-stage buffers: Source-Follower and 

Operational Amplifier
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Configuration for the signal of lower tier(left) and upper tier(right)

SF

OA

pix(0,1)  pix(1,4)  pix(0,5)  pix(1,7)  pix(0,9)  pix(1,11) pix(0,13) pix(0,15)

Oscilloscope

MUX



Design flow established
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Conventional SOI tape-out plus a special 3D add-on process

• Upper and lower chips manufactured with the LAPIS 0.2um process

• Chip-to-chip 3D integration implemented by T-Micro originated in Tohoku-U.

• Driven rules of 3D design and verification integrated into the EDA tools

stack-up of 3D layers flow chart of SOI-3D design


