

Development of a SOI-3D pixel prototype for the CEPC vertex detector

Yang ZHOU, Yunpeng Lu, Jing Dong, Qun Ouyang

on behalf of the SOI-3D study group

中国科学院高能物理研究所

核探测与核电子学国家重点实验室

中国物理学会高能物理分会第十三届全国粒子物理学术会议

2021年8月17日

Outline

Introduction & overview of pixel sensor R&D

Introduction of SOI-3D process

Design of the CPV4-3D prototype

Summary, outlooks & acknowledgements

Introduction

• Physics motivation drives the required performance of the CEPC sub-detectors

Physics process	Measurands	Detector subsystem	Performance requirement	
$\begin{array}{l} ZH,Z\rightarrow e^+e^-,\mu^+\mu^- \\ H\rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus rac{0.001}{p({ m GeV}) \sin^{3/2} heta}$	
$H \to b \bar{b} / c \bar{c} / g g$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})^{\checkmark}$	Impact parameter resolutio
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{{ m jet}}/E=3\sim4\%$ at 100 GeV	
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\begin{array}{l} \Delta E/E = \\ \frac{0.20}{\sqrt{E({\rm GeV})}} \oplus 0.01 \end{array}$	

◆ High spatial resolution, low material budget and fast readout pixel sensors constructed vertex detector required by the flavor tagging

Physics driven requirements	Running constraints	5	Sensor specifica	ations
$\sigma_{s.p.} = \frac{2.8 \text{um}}{2.8 \text{um}}$		>	Small pixel	~16 µm
Material budget 0.15% X ₀ /layer		>	Thinning to	50 um
i L	Air cooling	>	low power	50 mW/cm^2
r of Inner most layer <u>16mm</u>	beam-related background	>	fast readout	~1 µs
L	> radiation damage	>	radiation tole	rance
		-	<i>≤3.4 Mra</i>	d/year
Ref: CEPC Conceptual Design Report, Volume I	I - Physics & Detector, http://cepc.ihep.ac.cn/		$\leq 6.2 \times 10^{12}$	² n _{ea} / (cm ² year)

Overview of R&D activities

• Step #1: **Optimize the key performances** of pixel sensor with **current technologies**

Stitching CMOS technology: *potentially ultra light detector structures*

On going

spatial resolution ILD-like double-sided concept without power-pulsing mode

time stamp

CMOS pixel sensor

2021.8.17

Introduction of SOI-3D process

- Low power dissipation
- Almost no single event effects (SEE) probability; *radiation tolerance*

3D chip stacking process flow proposed for detectors using in High Energy physics Experiments @*Ikuo Kurachi, et all, Oct.7, Vertex 2020

Introduction of SOI-3D: design resources

- ♦ Shrinking pixel size always pushed to the physical limit
 - 0.35μm CMOS process: ~10 transistors and 6 metal layers, pixel size ~ 20*20 μm²
 @ ALTIMATE for STAR, ~ 2000 2014
 - 0.18μm CMOS process: ~100 transistors and 6 metal layers, pixel size ~ 26*28 μm² @ALPIDE for ALICE, ~ 2014 - 2021
 - 0.2 μ m SOI-3D process: ~100 transistors and 5 metal layers in each tier
 - lower tier: sensing diode and analog front-end
 - upper tier: digital readout
 - Pixel size can be cut half without compromise of functionality

*Credit of the conceptual drawing: Miho Yamada

Introduction of SOI-3D: minimum increase of material

Wire bonding pad for packaging

- ◆ The bulk of upper tier is **removed by wet-etching**
 - Thickness of upper tier: 260 μ m \rightarrow ~10 μ m
 - Wet-etching stopped by the box layer automatically, which makes SOI quite compatible with 3D integration
- \blacklozenge Lower tier can be thinned as a conventional sensor
 - 75 μm in SOI case and 50 μm in CMOS case (lower tier not necessarily an SOI sensor)
 - * Currently SOI-3D demonstrated on a lower tier of 260 µm thick

*Credit of the conceptual drawing: Miho Yamada

Introduction of SOI-3D: backside connections

Wire bonding pad for packaging

- ◆ Backside connection is Through Box Via (TBV)
 - $0.32 \ \mu m$ hole which implemented already in the SOI process
 - Smaller than Through Silicon Via (TSV) hole by a factor of 10
 - Additional metal layer formed for the bonding pad

*Credit of the conceptual drawing: Miho Yamada

Introduction of SOI-3D: frontside connections

◆ 3 μm diameter cylindrical Au bump

Multiple vertical connections per pixel, necessary and feasible

Layout of SOFIST4 designed by KEK for ILC. Evaluated at 2020

4 connections per pixel: power/ground, analog signal and comparator output in the SOFIST4 by KEK, first demonstration of SOI-3D process.

CPV4-3D: prototype sensor overview

Layout of CPV4-3D

Pixel size	$17.24 \times 21.04 \ \mu m^2$
Time resolution	~1 μ s or ~3 μ s in different operation mode
Pixel array	128×128
Chip size	4.5mm×4.5mm
Delivered	Nov. 2020

- Lower tier: PDD sensing diode + amplifier/comparator
- Upper tier: Hit D-Flipflop + Control register + AERD readout
- 2 vertical connections in each pixel: comparator output and test switch;
- Analog and Digital power/ground are also separated

中国物理学会高能物理分会第十三届全国粒子物理学术会议

CPV4-3D: PDD sensing diode system

CPV4-3D employs the PDD (Pinned Depleted Diode) sensing diode system for charge collection

Schematic view of PDD diode structure.

Composed of several layers of doped structures with different depths interface:

- Sensing node (NS) and the buried n-well (BNW1) form a charge collector;
- BPW1:shielding layer between circuits and the charge collector;
- BNW2, BPW2, BNW3 form a lateral gradient electrical field, benefit to charge collection efficiency;
- High negative voltage is backside applied to obtain a fully depleted substrate.
- ◆ Not 3D-specific, but the most active part of study in SOI pixel sensor technology
 - Evolution of years' development: BPW, Nested-wells, Double SOI, and PDD (Pinned Depleted Diode)
- All-in-one solution in the sensor part:
 - Control back-gate of transistors
 - Maximize charge collection efficiency
 - Suppress leakage current of Si-SiO₂ interface
 - Minimize the capacitance of electrode (Cd)
 - Shield the capacitive coupling between the sensor and pixel circuit

Detail of PDD structure characterization results shown by Dr. Jing Dong's talk today

CPV4-3D: Lower tier pixel

Pixel schematic of CPV4-3D lower tier. The *structure original from ALPIDE designed by CERN for ALICE*

- Lower tier pixel integrate the functions of
 - Charge collection;
 - Amplification;
 - Digitization;
 - Threshold tuning;
 - Structure for pulse inject test;
- -4V on the **back-gate** of MOS transistors required (BPW shown last

page) in order to minimize electrode capacitance Cd.

- Vth decreased 70 mV for PMOS and increased 50 mV for NMOS
- Characterized and modeled in HSPICE by KEK
- Influence on the front-end assessed
 - Current mirror matched and placed in a -4V N-well (Counter-part branch of M0, M4, M7)
 - The other transistors compensated by proper offset on their bias voltage (VCASN e.g.)
 - Confirmed by simulation

CPV4-3D: Lower tier pixel

◆ Transistor size selected according to ALPIDE design* to minimize FPN as a first order approximation

Transistor	M0	M1	M2	M3	M4	M5	M6	M7	M8	M9
W/L	1.8/8.5	1/0.4	1/0.4	1/5	2/8.05	0.63/4.94	0.63/3	1/5	1/0.4	1/1

• Simulation results of threshold and noise

	Threshold	Gain@Thr	Vnoise@Thr	ENC
Pre-layout	75 e⁻	32mV/10e-	4.33 mV	1.34 e⁻
Post-layout	125 e-	8.6mv/10e-	2.92 mV	4 e-

◆TID radiation enhancement

- Smallest working current path at M5 = 0.5nA, the same order of magnitudes with leakage after radiation (TID: ~1-10 Mrad)
- H-gate transistors used for M5 in test pixels for TID
- Compensation of TID-induced Vth shift to be applied on the BPW layer

H-gate NMOS layout used in this design

*Ref: D. Kim et al., 2016 JINST 11 C02042

中国物理学会高能物理分会第十三届全国粒子物理学术会议

2021.8.17

CPV4-3D: upper tier

Data readout structure (simplified) of CPV4-3D

1. Lower tier pixel: convert hits information into digital signals

- 2. Upper tier pixel: Hit D-Flipflop + Control registers (Musk/D_test/A_test/hit_response)
- 3. Data-driven readout (Asynchronous Encode Reset Decode*)
 - 4 stages AERD in each double column for 128 rows
 - 3 stages AERD under matrix for 64 double columns

4. SYNC/FREEZE generation block: outside the matrix

- Continuous readout mode
- Triggered readout mode

*Ping Yang, NIMA 785 (2015) 61-69

Continuous readout mode:

•

pixel_out1

pixel out2

strobe

grst

valid

read

freeze

sync

addr<3:0>

• Strobe == 1:

Timing by falling edge $\sim 1 \mu s$ resolution

X 2)

• New hits are freeze while reading

Triggered readout mode:

- Strobe as gate signal;
 - Timing by trigger $\sim 3\mu s$ resolution
- Read after trigger

14-bit output for fired pixel address information

中国物理学会高能物理分会第十三届全国粒子物理学术会议

CPV4-3D: layout implementation

Layout of 2*2 pixels in upper tier

Layout of 2*2 pixels in lower tier

- A lot of efforts to minimize the layout size: $21.04 \ \mu m * 17.24 \ \mu m$
 - Upper tier: 88 transistors for in-pixel control registers; 66 transistors for a single stage of AERD;
 - Lower tier: Compromise between noise and transistor size;

Y-axis mirrored, sensitive input node protected against the output node to minimize the crosstalk

3D bump positions in 2*2 pixels of upper and lower tier (Metal_1 only). 2 bumps for each pixel (Comparator output & test switch)

Summary and outlooks

Exploration of SOI-3D has started with the first prototype of CPV4-3D

◆ Targeting on the full specs of pixel sensors:

- > Spatial resolution: pixel size ~ $17 \times 21 \ \mu m^2 \ (\sim 1/2 \ area \ of \ 26*28 \ \mu m^2)$
- > Time resolution: ~ 1 μ s;
- Power dissipation: ~50mW/cm²;
- > Material budget: could be thinned down to $(75+10) \mu m$; or possibly to $(50+10) \mu m$;
- ➢ Radiation tolerance: TID tolerance enhanced design; initially less SEE benefits from SOI process.
- ◆ Sensors have just received; lower/upper tier separate test is preparing;
- \blacklozenge To examine the scheme, implementation and yield of SOI-3D;
- 2 ~ 3 MPW run planned in 5 years

Acknowledgements

This work is supported by

- The National Natural Science Foundation of China (11935019);
- The State Key Laboratory of Particle Detection and Electronic (SKLPDE-ZZ-202010)

谢谢大家!

backups

Dummy 3D bumps

- Dummy 3D bumps, to relieve the mechanical stress of upper tier
- Generated automatically in the user-designated area
- Excluded area for the dummy 3D bumps
 - The pixel matrix
 - The p-stop of guard ring
 - The alignment marks

Alignment marks

dummy 3D bumps avoids UBM and Masking ZC4

Design for test

Signal and power access to the chips

- Conventional IO pad equipped on both lower and upper chips, accessible before 3D integration
- Functional IO always stacked up with dummy IO to avoid conflicts of buffers

- Internal signal waveform are routed out of test pixels and buffered for oscilloscope observation
 - Internal node OUT_A and OUT_D
 - Two-stage buffers: Source-Follower and Operational Amplifier

Configuration for the signal of lower tier(left) and upper tier(right)

pix(0,1) pix(1,4) pix(0,5) pix(1,7) pix(0,9) pix(1,11) pix(0,13) pix(0,15)

Design flow established

Conventional SOI tape-out plus a special 3D add-on process

- Upper and lower chips manufactured with the LAPIS 0.2um process
- Chip-to-chip 3D integration implemented by T-Micro originated in Tohoku-U.
- **Driven rules** of 3D design and verification integrated into the EDA tools

stack-up of 3D layers

flow chart of SOI-3D design