

A novel concept of 4D crystal calorimetry for future lepton colliders: R&D highlights

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

Chinese Physics Society HEP Branch: Annual Meeting 2021 August 16-19, 2021

Next-generation colliders: a brief overview

- Higgs factory: consensus in strategies of global HEP community
 - A next-generation collider will most likely be an electron-positron collider
 - Precision measurements of the Higgs boson; use Higgs as a probe for new physics
- Challenge: requires unprecedented jet energy resolution (calorimetry as a key)

CEPC in China

CLIC at CERN

FCC at CERN

High-granularity calorimeters

- Particle Flow Algorithm (PFA)
 - Choose sub-detector best suited for each particle type
 - Separate showers of close-by particles in the calorimeters
- High-granularity (imaging) calorimeters: R&D within the CALICE collaboration
 - Hardware: explosion of readout channels (on the order of 1~10 million)
 - Compact (all inside magnet), hermetic (minimum gaps), limited space for instrumentation

High-granularity calorimeters

Other talks on PFA calorimeters in this conference:

- Silicon-Tungsten ECAL in the CMS-HGCAL project
 - H.Q. Zhang: Development of the CMS-HGCAL silicon module center in Beijing
- Scintillator-Tungsten ECAL
 - Y.Z. Niu: Development of a highly granular electromagnetic calorimeter prototype for the CEPC
- Scintillator-Steel HCAL
 - Y.K. Shi: R&D activities of highly granular hadron calorimeters for the CEPC

- High-granularity (imaging) calorimeters: R&D efforts within the CALICE collaboration
 - Excellent spatial resolutions (good separation capability) and timing resolution for (pile-up rejection, etc.)
- Existing designs: sampling structures (sensitive layers + absorber plates)
- A novel design proposed with finely segmented crystals: homogeneous calorimeter for PFA

Major motivations

- Background: future lepton colliders
 - Precision measurements with Higgs and Z/W
- Why crystal calorimeter?
 - Homogeneous structure
 - Optimal intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Energy recovery of electrons: to improve Higgs recoil mass
 - Corrections to the Bremsstrahlung of electrons
 - Capability to trigger single photons
 - Flavour physics at Z-pole: precision γ/π^0 reconstruction
 - Potentials in search of BSM physics
 - Fast timing capability
- 4D calorimeter with finely segmented crystals: spatial + timing
 - PFA capability for precision measurements of jets
 - Jet energy resolution aims for 3~4%

High-granularity Crystal Calorimeter: past events

- Firstly proposed in <u>CEPC calorimetry workshop (March 2019)</u>
- Follow-up workshop: Mini-workshop on a detector concept with a crystal ECAL
- R&D efforts targeting key issues and technical challenges

Virtual mini-workshop on a detector concept with a crystal ECAL, July 22-23, 2020, https://indico.ihep.ac.cn/event/11938/

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

- A natural design compatible with PFA
 - Fine segmentation in both longitudinal and transverse
 - Single-ended readout

Design 2: long bars

- Long bars: 1x40cm, double-sided readout
 - Super cell module: 40×40cm
 - Crossed arrangement in adjacent layers
 - Fine longitudinal granularity
- Save #channels and minimize dead materials
- Timing at two sides: positioning along bar

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

- Focus on PFA performance studies
- Crystal cubes (ideal granularity) for physics benchmarks
- Inputs for optimization of the existing PFA for crystals

Design 2: long bars (major focus)

- Focus on reconstruction algorithm development
- Key issues
 - Separation capability of multiple incident particles (of jets)
 - PFA performance

R&D efforts targeting key issues and technical challenges

- Key issues: performance studies and optimization
 - Detector layout design
 - Reconstruction algorithms
 - Performance: single/multiple particles, physics benchmarks
 - Impacts from dead materials: upstream tracker, services (cabling, cooling)
 - Potentials: dual-gated or dual-readout for better hadronic energy resolution
- Critical technical questions/challenges
 - Detector unit design: crystal options (BGO, PWO, etc.), SiPMs (HPK, NDL, etc.)
 - Front-end electronics: cornerstone for instrumentation of high-granularity calorimetry
 - Multi-channel ASIC: high signal-noise ratio, wide dynamic range, continuous working mode, minimal dead time, etc.
 - Light-weight cooling and supporting mechanics

Yong Liu (liuyong@ihep.ac.cn)

- Calibration schemes and monitoring systems: SiPMs, crystals and ASICs
- System integration: scalable detector design (modules), mass assembly, QA/QC

Crystal calorimeter: R&D highlights

- Performance studies
 - EM energy resolution
 - Higgs benchmark $ZH(Z \to \nu\nu, H \to \gamma\gamma)$: BMR
 - Neutral pions: invariant mass resolution
- Reconstruction for the design with long bars
 - Fast simulation studies
 - Algorithm development and performance studies
- Technical developments: crystals-SiPM and electronics
 - Geant4 full simulation with optical physics processes
 - Energy resolution and response uniformity: measurements with radioactive sources
 - SiPM-readout ASIC tests

Crystal calorimeter: Geant4 simulation studies

- EM energy resolution: impacts from different aspects
 - MIP response ("light yield" in plots) and energy threshold
 - Digitisation: photon statistics (crystal+SiPM), electronics resolution

Moderately high light yield and low threshold required for better than 3% stochastic term

Physics benchmark with two photons in final states

- Full simulation studies with $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$ at 240 GeV
 - Compared with the SiW ECAL option (stochastic term ~17%) in CEPC CDR
 - Crystal ECAL improves Boson Mass Resolution (BMR) by a factor of ~2

Detector with SiW ECAL option h rec mass **Entries** 7564 800 - Work in Progress 124.1 Std Dev 2.865 γ^2 / ndf 14.89 / 8 Prob 0.06138 819.6 ± 13.9 Constant 600 124.6 ± 0.0 Sigma 1.4 ± 0.0 500 400 300 100 BMR=1.2% 115 120 125 Higgs Invariant Mass / GeV

Constant term in energy resolution not included; to be further studied

12

Performance studies: neutral pions with Arbor-PFA

- Reconstruction of π^0 in ECAL: invariant mass and its resolution
 - Single π^0 's generated by the particle gun
 - Significant resolution improvement with crystals compared with SiW ECAL
 - Further studies on photon positioning/angular resolution: ongoing

P_{x0}/GeV

Crystal calorimeter: R&D highlights

- Performance studies
 - Higgs benchmark $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$: BMR
 - Neutral pions: invariant mass resolution
- Reconstruction for the design with long bars
 - Fast simulation studies
 - Algorithm development and performance studies
- Technical developments: crystals-SiPM and electronics
 - Geant4 full simulation with optical physics processes
 - Energy resolution and response uniformity: measurements with radioactive sources
 - SiPM-readout ASIC tests

Jets in crystal calorimeter: event display

- Impressions of topology of EM/hadron showers within jets
- Intuitive guidance for the reconstruction development
- Strategy
 - First studies with (close-by) EM showers and MIP-like particles
 - Then hadron showers: due to intrinsic complexity

Multiple gammas and a charged pion

Multiple gammas and hadrons

Studies on physics requirements: fast simulation

- Estimate the multiplicity level of jets
- Detailed studies with incident particles (from a jet) hitting the hottest tower

Tower with 2 particles: distance & energy distribution

Layout with long crystal bars: simulation and reconstruction

- Simulation
 - Established a full barrel geometry with DD4HEP
 - Digitisation: energy threshold and timing resolution

An octave in the barrel ECAL with long crystal bars

Barrel ECAL

Yong Liu (liuyong@ihep.ac.cn)

Reconstruction

- 1D clustering & cluster splitting:
 - "Seed" in 1D cluster: local maximum && E>5MeV (~0.5MIP).
 - If ≥ 2 seeds in one cluster: split with transverse profile.

• 2D matching: match X-Y bars to showers in plane:

• 3D clustering:

Layout with long crystal bars: reconstruction development

- New algorithm can handle ambiguities of 2 photons: good separation efficiency
- Now working on the reconstruction of hadron showers: to address several challenges

Separation efficiency curve with two photons and with varying distances

Crystal calorimeter: R&D highlights

- Performance studies
 - Higgs benchmark $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$: BMR
 - Neutral pions: invariant mass resolution
- Reconstruction for the design with long bars
 - Fast simulation studies
 - Algorithm development and performance studies
- Technical developments: crystals-SiPM and electronics
 - Geant4 full simulation with optical physics processes
 - Energy resolution and response uniformity: measurements with radioactive sources
 - SiPM-readout ASIC tests

Crystal-SiPM studies

- To address key questions
 - Performance of crystal bars and SiPMs
 - Validation of Geant4 full simulation, which will be used for digitization
- Infrastructure established: mechanics for crystals, SiPM readout electronics
 - To test with SiPMs (different types, vendors) and wrapping foils

Geant4 full simulation: a single crystal bar

Simulation model

- A single crystal bar wrapped with reflective foil
- Physics processes
 - Scintillation and Cherenkov
 - Boundary processes and absorption
 - SiPM modelling: realistic geometry, surfaces and response to photons (PDE)

Key questions to be addressed

- Comparison with measurements of crystals in the lab
- Comparison of models of optical processes in Geant4

Key quantities

- Number of photons detected by 2 SiPMs
- Time stamps of each detected photons

Uniformity scan in Geant4 simulation

- BGO response uniformity scan:
 - 662keV gamma from Cs-137
 - 400mm BGO crystal bar, transverse 1cm²
 - Varying Cs-137 positions
 - Fit the 662keV photopeak to get #photons

Generally good response uniformity expected in G4 simulation

First measurements for the uniformity scan

- Setup: 400mm long BGO crystal (with ESR foil) and ¹³⁷Cs source
- The same configuration as the simulation

- Trends are not significant enough due to the systematic difference between 2 SiPMs
- Refractive indices of materials
 - Air: 1.00
 - Epoxy: 1.52
 - BGO: 2.15

Work plan: to use optical grease to improve the crystal-SiPM coupling and reproducibility

Response and energy resolution: impacts of crystal length

- PMT has better acceptance (full coverage of crystal transverse area) than SiPM; to be updated with larger SiPMs
- Further comparisons will be done with simulation

Front-end electronics for SiPM readout

- ASIC "KLauS": developed within the CALICE collaboration
 - Designed by U. Heidelberg (KIP), originally for CALICE AHCAL
 - Promising candidate for SiPM readout: 36-channel, low-power
 - Excellent S/N ratio: stringently required by high-dynamic SiPMs (small pixels)
 - Continuous working mode: crucial for circular colliders (no power pulsing)
- Need to quantitatively study performance: with evaluation boards

Joint efforts with JUNO-TAO team

Klaus5 tests with NDL-SiPM

- NDL-SiPM features: high pixel density (>10k pixels/mm²) and high PDE
 - Requires high S/N ratio in electronics to resolve single photons, due to the low intrinsic gain of small pixel pitches
- Klaus5 tested and proved to be able to resolve the single photons (32fC/p.e.)
 - Benefits from its high S/N ratio and high resolution

Single photon spectrum in 12-bit ADC mode: after corrections

Klaus5: dynamic range and dead time

- Charge injection tests
 - Dynamic range: ~550pC as the maximum charge (preliminary results)
 - When time interval > 500ns, 100% efficiency of separating the two pulses

Adapter PCB to inject charge pulses injection to 36 channels

Summary and prospects

- 4D high-granularity crystal calorimeter
 - Aim to achieve optimal EM energy resolution and PFA capability
 - Steady R&D progress targeting key issues
- Performance studies with crystals using Arbor-PFA
 - Performance studies with neutral pions and Higgs benchmark
- Reconstruction algorithm development for the design of long bars
 - Fast simulation and performance studies
- Technical developments
 - SiPM and crystal studies: measurements and Geant4 simulation studies
 - SiPM-readout ASIC characterisations
- Welcome broader collaborations

Thank you!

Backup slides

Legendary crystal calorimeters at colliders

Table 35.8: Resolution of typical electromagnetic calorimeters. E is in GeV.

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/\mathrm{E}^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_{0}$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_{0}$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
CsI(Tl) (BES III)	$15X_0$	2.5% for $E_{\gamma} = 1$ GeV	2010
$PbWO_4$ (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
$PbWO_4$ (ALICE)	$19X_{0}$	$3.6\%/\sqrt{E} \oplus 1.2\%$	2008
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990

Reference: Review of Particle Detectors at Accelerators in 2020 (https://pdg.lbl.gov/)

Particle-flow algorithm

Components in jets	Sub-Detectors	Energy fraction (average) within a jet	Detector Resolution
charged particles (X^{\pm})	Tracker	60% E _j	$10^{-4}E_{X}^{2}$
photons (γ)	ECAL	30% E _j	$0.15\sqrt{E_{\gamma}}$
neutral hadrons (h)	ECAL+HCAL	$10\%~E_j$	$0.55\sqrt{E_h}$

- Reminder: multiple particles in a jet
- Particle Flow Algorithm (PFA)
 - Choose a sub-detector best suited for each particle type
 - Charged particles measured in tracker
 - Photons in ECAL
 - Neutral hadrons in HCAL: reduce the role of hadron calorimetry
- Separation of energy depositions of close-by particles in the calorimeters
 - Crucial for the track-calorimeter matching

Reconstruction development: strategies and status

- Reconstruction algorithm of long bars: start from simple and evolve to complex
 - Level 1: single EM particle (γ) and single MIP (finished)
 - Model the EM showers; identify the MIP track and match it with tracker
 - Level 2: separation of two simple particles $(\gamma + \gamma, \gamma + \mu)$ (finished)
 - Energy splitting between two EM showers; reduce ghost hits
 - Level 3: single hadrons (work ongoing)
 - Model the hadronic showers
 - Level 4: multi-particles (to be done)
 - Shower confusion, neutral particle identification, etc.
 - Level 5: Jets (to be done)
- Performance in physics benchmarks like $ZH \rightarrow \nu\nu gg, qqgg$.

Hadronic showers in ECAL: ongoing work

- Challenges in hadronic shower reconstruction
 - Multiple secondary particles in the shower.
 - Nearly no longitudinal or track information to use.
 - A large amount of ghost hits.
- Ideas and possible solutions
 - Use Arbor's ideas to connect hits
 - Reduce the iteration times
 - New χ^2 algorithm for ghost hits: match with minimum χ^2 and reduce hit conditions.
 - (Ongoing) Merge clusters with specific topology
 - (Ongoing) Identify and tag photons and MIPs first

Geant4 10.7

- MIP response: number of detected photons
 - Muon shooting the crystal bar center
 - Crystal length varies from 5mm to 400mm
 - Crystal transverse size: 1cm²

MIP response significantly depends on crystal length

Yong Liu (liuyong@ihep.ac.cn)

Sufficiently high MIP response of 40cm long BGO

Light yield: 8200/MeV for BGO, 120/MeV for PWO

MIP energy deposition: ~ 9MeV (MPV)

- Timing: time stamps of the first detected photons
 - Muon shooting the crystal bar center
 - Crystal length varies from 5mm to 400mm
 - Crystal transverse size: 1cm²

- 0.5~0.7 ns time resolution expected for 40cm long BGO
- Fast and slow components in time spectrum

Light yield: 8200/MeV for BGO, 120/MeV for PWO MIP energy deposition: ~ 9MeV (MPV)

Comparison of optical models in Geant4

- Comparison of 3 models for optical processes in Geant4
 - UNIFIED (analytical calculation, fast and relatively accurate)
 - LUT (BGO measurements), LUT_DAVIS (LYSO measurements)
- Simulation was set up for further comparisons with measurements

Yong Liu (liuyong@ihep.ac.cn)

Measurements of the BGO energy resolution: setup

BGO Crystal:

Lengths: 40/80/160mm

• Widths: 20/15/10mm

Surfaces: polished/ground

Tyvek / ESR wrapping

4×4mm² window for SiPM readoout

Photosensitive Device:

- SiPM & PMT
- SiPM: S13360-3050CS
 - 50 μ m pitch, 3 \times 3mm², 3600 pixels
- PMT: R11065
 - 76mm (3"), gain: 5×10^6

Crystal measurements: impacts of wrapping and surfaces

ESR foil wrapping and polished surface show better energy resolution

