Hamiltonian Effective Field Theory (HEFT) in Elongated or Moving Finite Volume

Speaker: Yan Li

Collaborators: Jia-Jun Wu, Derek B. Leinweber, Anthony W. Thomas

PRD 103, 094518 (2021)

Experiment vs Lattice QCD

Two particle system

- Experiment: Infinite volume
 - Two particle scattering
 - Scattering phase shifts $\delta_l(E)$

- Lattice QCD: Finite periodic box (with length *L*)
 - Two particle bound states
 - Finite-volume energy levels $E_n(L)$

 $\left< \Omega \right| \chi(t) \chi^{\dagger}(0) \left| \Omega \right> = \sum_{n} C_{n} e^{-E_{n} t}$

What is HEFT

> Not itself an EFT, but an extension of Chiral EFT

M. Lüscher: Commun. Math. Phys., 105:153-188, 1986. Commun. Math. Phys., 104:177, 1986. Nucl. Phys., B354:531-578, 1991.

Lüscher's Method: model-independent

still needs parametrization because of limited data

HEFT:

- Parametrization respecting Chiral EFT, incorporating quark-mass dependence.
- > Hamiltonian has a clear physical picture
- Composition of finite-volume eigenstates

 $\langle \Omega | \chi(t) \chi^{\dagger}(0) | \Omega \rangle = \sum_{n} C_{n} e^{-E_{n}t}$

qualitative information from Lattice simulation

$$\Lambda(1405): uds, \pi\Sigma, \overline{K}N$$

PRL 114, 132002 (2015)

 $B = \frac{114}{132002}$

 $B = \frac{114}{132002}$

 $B = \frac{114}{132002}$

 $B = \frac{114}{132002}$

 $B = \frac{114}{132002}$

Previous Work

Partial-wave mixing in rest-frame cube

E.g.: s- and g-waves are mixed in finite volume

Infinite volume:

$$\int d\Omega_{\hat{\mathbf{k}}} Y_{l'm'}^*(\hat{\mathbf{k}}) Y_{lm}(\hat{\mathbf{k}}) = \delta_{l',l} \delta_{m',m}$$

Finite volume:

$$4\pi \sum_{|\mathbf{n}|^2=N} Y^*_{l'm'}(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}})$$

Reduction of matrix dimension: ~60000 -> ~1000

Current Work

From H in rest-frame infinite-volume, how to get H_L in moving-frame elongated cube

> Partial-wave mixing in elongated or moving finite volume

Previous and current works can be used not only in HEFT, but also in any Hamiltonian formalism

Parallelepiped and elongated cube

7/15

Moving frame

$$\begin{aligned} \int \frac{d^{3}\mathbf{k}_{\mathrm{r}}}{(2\pi)^{3}} &\to L^{-3}\sum_{\mathbf{k}_{\mathrm{r}}} \\ H & \longrightarrow \qquad H_{L} \text{ in rest frame} \\ & & & \\ & &$$

Elongated moving system

Case	\mathbf{d}_{η}	η	\mathbf{d}_{γ}	$m_1 = m_2?$	Degenerate shell
A	any	=1	0	Any	\mathbf{n}^2
В	$\mathbf{d}\neq0$	Any	$\boldsymbol{d} \neq \boldsymbol{0}$	No	$(\mathbf{n}^2, (\mathbf{d} - \mathbf{n})^2)$ or $(\mathbf{n}^2, \mathbf{n} \cdot \mathbf{d})$
C 1	$\mathbf{d}\neq0$	$\neq 1$	0	Any	$(\mathbf{n}^2, \mathbf{n} \cdot \mathbf{d})$
C2	$\boldsymbol{d}\neq\boldsymbol{0}$	Any	$\boldsymbol{d}\neq\boldsymbol{0}$	Yes	$\{\mathbf{n}^2, (\mathbf{d} - \mathbf{n})^2\}$

 d_{η} : elongated direction η : elongated magnitude d_{γ} : moving direction

Degenerate shell: degenerate eigenstates of H_0

Partial-wave cut: s-, d- and g-waves
 Parametrization: separable potentials

Dimension of Hamiltonian matrix

Case	$N_{cut} = 100$ ~ 4GeV	$N_{cut} = 600 \text{ ~ 10GeV}$
Before reduction	~4,000	~60,000
Rest cube	~100	~1,000
Elongated or moving	~500	~5,000

Data: 11(Rest)+38(Moving)=49

Red: rest-frame only Blue: rest & moving

After including the moving

- Central values shift slightly
- Error bands improved a lot

13/15

• HEFT is now ready for all two-particle system

Outlook

- More applications
- Three-particle system

15/15