Systematic study of $\eta_c \rightarrow 2\gamma$ from Lattice QCD

孟雨(Yu Meng)

北京大学

中国物理学会高能物理分会第十三届全国粒子物理学术会议2021 2021.08.17

主要合作者:冯旭,刘川

- \bullet Overviews: $\eta_c \to 2\gamma$
 - Experiment & PDG
 - Perturbative and nonperturbative results
- The new method on lattice
- Result and discussion
- Conclusion

- Perturbative and nonperturbative QCD are appliable for $\eta_c \to 2\gamma$
- $\eta_c \to 2\gamma$ provides an ideal ground to test the validity limit of various approximations and techniques e.g.
 - NRQCD
 - DSE
 - Lattice method
 - • •

$\eta_c \rightarrow 2\gamma$: experiments

Exp	$\mathcal{B}r \times 10^4$	Refs
CLEO	$1.4^{+0.7}_{-0.5} \pm 0.3$	PRL 101,101801(2008)
BESIII	$2.7\pm0.8\pm0.6$	PRD 87,032003(2013)
World average	$1.9^{+0.7}_{-0.6}$	PDG(2021)
Global fit	1.61 ± 0.12	PDG(2021)

- Difficulties: Multi-intermediate state contamination
- Opportunities: As the largest τ -charm factory, BESIII has accumulated $10^{10} J/\psi$ events.

$\eta_c \rightarrow 2\gamma$: theories

Smaller results on lattice

J. J. Dudek *et al.* Phys. Rev. Lett.**97**,172001(2006)
T. Chen *et al.* Eur. Phys. J. C **76**, 358 (2016)
C. Liu *et al.* Phys. Rev. D.**102**,034502(2020)

• Other bigger results:

NRQCD F. Feng, Y. Jia, W.-L. Sang Phys. Rev. Lett. 119, 252001 (2017)

DSE J. Chen, D.-H. Ding, L. Chang, Y.-X. Liu, Phys. Rev. D. 95,016010(2017)

We firstly include various systematic errors at the same time

- \rightarrow lattice discretization effect
- \rightarrow excited-stated effect
- \rightarrow mass scaling effect

• • •

 $\eta_c \to 2\gamma$

• Amplitude:

$$\mathcal{M} = e^2 \epsilon_{\mu}(p) \epsilon_{\nu}(p') H_{\mu\nu}(p,q)$$
$$H_{\mu\nu}(p,q) = \int d^4 x e^{-ipx} \mathcal{H}_{\mu\nu}(x,q), \quad \mathcal{H}_{\mu\nu} = \langle 0 | \text{Tr}[J_{\mu}(x) J_{\nu}(0)] | \eta_c(q) \rangle$$

• Form factor: $H_{\mu\nu}(p,q) = \epsilon_{\mu\nu\alpha\beta} p_{\alpha} q_{\beta} F(p^2)$

• Decay width:

$$\Gamma_{\eta_c\gamma\gamma} = \alpha_{\rm em}^2 \frac{\pi}{4} m_{\eta_c}^3 |F_{\eta_c\gamma\gamma}|^2, \quad F_{\eta_c\gamma\gamma} = F(0)$$

Traditional method for on-shell form factor

• Off-shell form factors by projecting discrete momentum $\vec{p} = \frac{2\pi \vec{n}}{L}$

$$F(p^2) \xrightarrow{\text{Cont.Limit}} F(0)$$

- Leading to additional computation cost and systematic source. J. J. Dudek *et al.* Phys.Rev.Lett.**97**,172001(2006) Chuan Liu *et al.* Phys.Rev.D.**102**,034502(2020)
- Without considering various systematic effects
 - Lattice discretization effect: only one or two lattice spacings used
 - Excited-state contamination: without considering the excited-state effect on the lattice

Direct approach to on-shell form factor

• Construct a scalar function[infinite volume]

$$\mathcal{I} \equiv \qquad \epsilon_{\mu\nu\alpha\beta} p_{\alpha} q_{\beta} H_{\mu\nu}(p,q) \\ = \qquad m_{\eta_c} \int dt e^{m_{\eta_c} t/2} \int d^3 \vec{x} e^{-i\vec{p}\cdot\vec{x}} \epsilon_{\mu\nu\alpha0} \frac{\partial \mathcal{H}_{\mu\nu}(x,q)}{\partial x_{\alpha}}$$

• Averaging the \vec{p} directions and projecting $|\vec{p}|=m_{\eta_c}/2[\text{infinite volume}]$

$$F_{\eta_c\gamma\gamma} \equiv \frac{\mathcal{I}}{[\epsilon_{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}][\epsilon_{\mu\nu\rho\sigma}p_{\rho}q_{\sigma}]} \\ = -\frac{1}{2m_{\eta_c}}\int dt e^{m_{\eta_c}t/2}\int d^3\vec{x} \frac{j_1(|\vec{p}||\vec{x}|)}{|\vec{p}||\vec{x}|} \epsilon_{\mu\nu\alpha0}x_{\alpha}\mathcal{H}_{\mu\nu}(x,q)$$

• Replaced by finite-volume version

$$\epsilon_{\mu\nu\alpha0}x_{\alpha}\mathcal{H}_{\mu\nu}(x,q) \to \epsilon_{\mu\nu\alpha0}x_{\alpha}\mathcal{H}^{L}_{\mu\nu}(x,q)$$

Exponentially supressed with the distance

Excited-state effect

- Two-point function: $\langle \mathcal{O}_{\eta_c}(t) \mathcal{O}_{\eta_c}^{\dagger}(0) \rangle \xrightarrow{t \gtrsim 1.6 \text{fm}} \text{ground state } \eta_c$
- Three-point function: $\langle J_{\mu}(t)J_{\nu}(0)\mathcal{O}_{\eta_{c}}^{\dagger}(-\Delta t)\rangle \xrightarrow[\Delta t > 1.6 \mathrm{fm}]{} \eta_{c} \to 2\gamma$
 - Large Δt , t is not enough to obtain the signal
 - Small Δt , excited-state contamination

Extraction of η_c ground-state contribution

• Ground and first excited states dominate

$$\langle J_{\mu}(\vec{x},t)J_{\nu}(0)\mathcal{O}_{\eta_{c}}^{\dagger}(-\Delta t)\rangle = \frac{Z_{0}}{2m}\mathcal{H}_{\mu\nu}^{(0)}e^{-m\Delta t} + \frac{Z_{1}}{2m_{1}}\mathcal{H}_{\mu\nu}^{(1)}e^{-m_{1}\Delta t}$$

$$\mathcal{H}_{\mu\nu} = \mathcal{H}_{\mu\nu}^{(0)} + \frac{Z_1 m}{Z_0 m_1} \mathcal{H}_{\mu\nu}^{(1)} \times e^{-(m_1 - m)\Delta t}$$

• Extract the ground-state form factor

$$F_{\eta_c\gamma\gamma} = F_{\eta_c\gamma\gamma}^{(0)} + C_F \times e^{-(m_1 - m)\Delta t}$$

• Extract mass of ground and first excited state

$$\langle \mathcal{O}_{\eta_c}(t) \mathcal{O}_{\eta_c}^{\dagger}(0) \rangle = A_1 \left(e^{-mt} + e^{-m(T-t)} \right) + A_2 \left(e^{-m_1 t} + e^{-m_1(T-t)} \right), m_1 \ge m_1$$

Ens	a(fm)	V/a^4	$a\mu_{sea}$	$N_{\rm conf} \times T_s$	$\Delta t/a$
a98	0.098	$24^3 \times 48$	0.0060	235×48	7:1:17
a85	0.085	$24^3 \times 48$	0.0040	197×48	8:1:18
a67	0.0667	$32^3 \times 64$	0.0030	197×64	10:2:24

- All ensembles have similar physical spatial volume: $2.04 \sim 2.35$ fm.
- All ensembles have similar pion mass: $300 \sim 360$ MeV.
- A series of Δt to extract the ground-state contribution for $\eta_c \rightarrow 2\gamma$.
- Charm quark mass is tuned by physical η_c and J/ψ mass, respectively, and take the difference as our systematic error.

Form factor on lattice

- An obvious dependene on excited-state of η_c .
- Dashed black line: a suitable time truncation $t_{\rm cut} \sim 1$ fm.
- The right: an extrapolation for the form factors at $t_{\rm cut}$.

Finite volume effect

• a67: R-dependence of form factor on spatial summation with $|\vec{x}| \leq R$ for $t_{\rm cut} \simeq 1$ fm and $\Delta t \simeq 1.6$ fm, take a67-l as an example.

Continuous limit

- Automatic O(a) improved;
- PDG-fit: global fit of PDG;
- PDG-aver: world average of PDG;
- DSE ~ 6.4 PRD95,016010(2017) NRQCD ~ 10 PRL119,252002(2017)

$$\Gamma(\eta_c \to 2\gamma) = \begin{cases} 6.51(18) \text{ keV } & m_{\eta_c} = m_{\eta_c}^{\text{phys}} \\ 6.60(16) \text{ keV } & m_{J/\psi} = m_{J/\psi}^{\text{phys}} \\ 5.15(35) \text{ keV } & \text{PDG-fit} \\ 6.11^{+2.2}_{-1.9} \text{ keV } & \text{PDG-aver} \end{cases}$$

• The discrepancy bewteen PDG-fit and lattice result is beyond 3 σ

Lattice & Experiments

- OUR FIT: a minimum χ^2 -fit for the branching ratios from lots of experimental measurements on different decay channels.
- The fitting errors are consistent with world average for all decay channels fitted, but except for $\eta_c \rightarrow 2\gamma$.

CONSTRAINED FIT INFORMATION

show precise values?

An overall fit to total width, 8 combinations of particle width obtained from integrated cross section, 19 branching ratios uses 93 measurements and one constraint to determine 13 parameters. The overall fit has $a_y^2 = 117.8$ for 81 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $<\delta x_i \sim \delta x_j > / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to parameters p_{i_i} including the branching fractions, $a_i = \Gamma_i / \Gamma_{total}$ The fit constrains the a_i whose labels appear in this array to sum to one.

^41	100												
X7	16	100											
X ₁₅	3	5	100										
X27	18	35	6	100									
X28	9	17	3	47	100								
X31	10	18	3	21	10	100							
X35	7	13	2	21	10	8	100						
X38	12	22	4	25	12	14	10	100					
X41	11	20	4	27	13	12	10	15	100				
X43	3	5	1	6	3	3	2	4	23	100			
X49	-27	-51	-9	-59	-28	-32	-23	-38	-38	-9	100		
Г	-1	-3	0	-3	-1	-2	-1	-2	6	1	-27	100	
x ₉₉₉	0	0	0	0	0	0	0	0	0	0	0	0	10
	X ₄	X7	X15	X27	Xoo	Xor	Xor	Xoo	Xaa	Xao	XAQ	Г	Xgg
	-		10	21	- 20				1.041				
4			10	21	- 20	131	30		41		40		
4	Mode	,	10	21	20	131	135	Rate (N	/leV)	S	cale fact	or	
+ Γ4	Mode $n_{-}(1S) \rightarrow$	K*(892)K	*(892)	21	- 20	0.	0069 ±0.0	Rate (N	/leV)	S	cale fact	or	
τ ₄ Γ ₇	Mode $\eta_c(1S) \rightarrow = \eta_c(1S) \rightarrow = 0$	κ [*] (892)K φφ	*(892)	21	-20	0.	0069 ±0.0 00174 ±0.	Rate (N 013 00019	/leV)	S	cale fact	or	
+ Γ ₄ Γ ₇ Γ ₁₅	Mode $\eta_c(1S) \rightarrow \eta_c(1S) \rightarrow \eta_c(1S) \rightarrow \eta_c(1S) \rightarrow 0$	$K^{*}(892)\overline{K}$ $\phi\phi$ $f_{2}(1270)f_{2}$	*(892)	21		0.	0069 ±0.0 00174 ±0. 0098 ±0.0	Rate (N 013 00019 025	/leV)	S	cale fact	or	
+ Γ ₄ Γ ₇ Γ ₁₅ Γ ₂₇	$\begin{array}{c} Mode \\ \eta_c(1S) \rightarrow \\ \eta_c(1S) \rightarrow \\ \eta_c(1S) \rightarrow \\ \eta_c(1S) \rightarrow \end{array}$	$K^{*}(892)\overline{K}$ $\phi\phi$ $f_{2}(1270)f_{2}$ $K\overline{K}\pi$	*(892) (1270)	21	-20	0.	0069 ±0.0 00174 ±0. 0098 ±0.0 073 ±0.00	Rate (N 013 00019 025 4	/leV)	S	cale fact	or	
Γ ₄ Γ ₇ Γ ₁₅ Γ ₂₇ Γ ₂₈	$\begin{array}{c} Mode \\ \\ \eta_c(1S) \rightarrow \end{array}$	$K^*(892)\overline{K}$ $\phi\phi$ $f_2(1270)f_2$ $K\overline{K}\pi$ $K\overline{K}\eta$	*(892) (1270)	21	-20	0.	0069 ±0.0 00174 ±0. 0098 ±0.0 073 ±0.00 0136 ±0.0	Rate (N 013 00019 025 4 015	/leV)	S	cale fact	or	
Γ ₄ Γ ₇ Γ ₁₅ Γ ₂₇ Γ ₂₈ Γ ₃₁	$\begin{array}{l} Mode \\ \eta_c(1S) \rightarrow \end{array}$	$K^{*}(892)\overline{K}$ $\phi\phi$ $f_{2}(1270)f_{2}$ $K\overline{K}\pi$ $K\overline{K}\eta$ $K^{+}K^{-}\pi^{+}$	*(892) (1270) π ⁻	~	-20	0. 0. 0. 0. 0. 0.	0069 ±0.0 00174 ±0. 0098 ±0.0 073 ±0.00 0136 ±0.0 0066 ±0.0	Rate (N 013 00019 025 4 015 011	/leV)	S	cale fact	or	
F4 F7 F15 F27 F28 F31 F35	$\begin{array}{c} Mode \\ \eta_c(1S) \rightarrow \end{array}$	$K^{*}(892)\overline{K}$ $\phi\phi$ $f_{2}(1270)f_{2}$ $K\overline{K}\pi$ $K\overline{K}\eta$ $K^{+}K^{-}\pi^{+}$ $2(K^{+}K^{-})$	*(892) (1270)	21	-20	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0069 ±0.0 00174 ±0. 0098 ±0.0 0173 ±0.00 0136 ±0.0 0066 ±0.0 00143 ±0.	Rate (N 013 00019 025 4 015 011 00030	/leV)	S	cale fact	or	
Γ ₄ Γ ₇ Γ ₁₅ Γ ₂₇ Γ ₂₈ Γ ₃₁ Γ ₃₅ Γ ₃₈	$\begin{array}{l} Mode \\ \\ \eta_c(1S) \rightarrow \end{array}$	$K^{*}(892)\overline{K}$ $\phi\phi$ $F_{2}(1270)f_{2}$ $K\overline{K}\pi$ $K\overline{K}\eta$ $K^{+}K^{-}\pi^{+};$ $2(K^{+}K^{-})$ $2(\pi^{+}\pi^{-})$	*(892) (1270) #-	21		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0069 ±0.0 00174 ±0. 0098 ±0.0 0136 ±0.0 0066 ±0.0 00143 ±0. 0091 ±0.0	Rate (N 00019 025 4 015 011 00030 012	/eV)	S	cale fact	or	
+ F4 F7 F15 F27 F28 F31 F35 F38 F41	$\begin{array}{l} Mode \\ \\ \eta_c(1S) \rightarrow \end{array}$	$K^{*}(892)\overline{K}$ $\phi\phi$ $f_{2}(1270)f_{2}$ $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}$ $2(K^{+}K^{-})$ $2(\pi^{+}\pi^{-})$ $p\overline{p}$	*(892) (1270) π ⁻			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0069 ±0.0 00174 ±0. 0098 ±0.0 0136 ±0.0 00166 ±0.0 00066 ±0.0 00143 ±0. 00091 ±0.0	Rate (N 013 00019 025 4 015 011 00030 012 00014	/leV)	S	cale fact	or	
 Γ₄ Γ₇ Γ₁₅ Γ₂₇ Γ₂₈ Γ₃₁ Γ₃₅ Γ₃₈ Γ₄₁ Γ₄₃ 	$\begin{array}{c} \eta_c(1S) \rightarrow \\ \eta_c(1S) \rightarrow \end{array}$	$K^{*}(892)\overline{K}$ $\phi\phi$ $f_{2}(1270)f_{2}$ $K\overline{K}\pi$ $K\overline{K}\eta$ $K^{+}K^{-}\pi^{+};$ $2(K^{+}K^{-})$ $2(\pi^{+}\pi^{-})$ $p\overline{p}$ $A\overline{A}$	*(892) (1270) π ⁻			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0069 ±0.0 00174 ±0. 0098 ±0.0 0136 ±0.0 0066 ±0.0 00143 ±0. 0091 ±0.0 00144 ±0.	Rate (N 013 00019 025 4 015 011 00030 012 00014 00023	/leV)	S	cale fact	or	

• The smaller errors of fitting may due to: (i)large uncertainties of $\eta_c \rightarrow 2\gamma$; (ii)Highly correlated with other decay channels; (iii)The other channels have high precisions.

- Excited-state effect \rightarrow A series of Δt
- Lattice discretization effect \rightarrow Three lattice spacings
- Scale setting effect
- Finite volume effect

- \rightarrow Two mass tunings
- $\rightarrow \text{R-dependence}$

Systematic effects we have considered

What we have ingored

Type-I

• Much smaller contribution due to

- Type-I: SU(3) asymptotic symmetry with $m_{u,d,s} \ll m_c$
- Type-II: OZI supressed with $lpha_s(m_c)$

Conclusion

- Propose a direct method to calculate the on-shell form factor of $\eta_c \rightarrow 2\gamma$.
- The method can be applied for processes involving the leptonic or radiative particles in the final states:
 - $\bullet \ \pi^0 \to 2\gamma$
 - $J/\psi \rightarrow 3\gamma$
 - $J/\psi \to \gamma \eta_c$
 - $J/\psi \to \gamma \nu \bar{\nu}$
- Various systematic effects are examined carefully.
- In agreement with the world average of PDG, but different from the global fit beyond 3σ .

We expect more precise analysis from BESIII with $10^{10}J/\psi$.

Thank you!

Back up

Infinite volume reconstruction [1812.0981]

 Divide the time integral into two parts: short distance calculated on lattice, long distance reconstructed with the short-distance hadroinc function:

$$\mathcal{H}_{\mu\nu}(\vec{x},t)|_{t>t_s} = \int \frac{d^3\vec{p}}{(2\pi)^3} \int d^3\vec{x'} \mathcal{H}_{\mu\nu}(\vec{x'},t_s) e^{-E_{\vec{p}}(t-t_s) + i\vec{p}\cdot(\vec{x}-\vec{x'})}$$

• Long-distance form factor:

$$F_{\eta_{c}\gamma\gamma}^{(\infty)} = -\frac{1}{m_{\eta_{c}}} \frac{e^{|\vec{p}|t_{s}}}{\sqrt{m_{J/\psi}^{2} + |\vec{p}|^{2}} - |\vec{p}|} \int d^{3}\vec{x} \frac{j_{1}(|\vec{p}||\vec{x}|)}{|\vec{p}||\vec{x}|} \epsilon_{\mu\nu\alpha0} x_{\alpha} \mathcal{H}_{\mu\nu}(t_{s},\vec{x})$$

• The total:

$$F_{\eta_c\gamma\gamma} = F_{\eta_c\gamma\gamma}^{(L)} + F_{\eta_c\gamma\gamma}^{(\infty)}$$