Decays studies of charmonium states at BESIII

Gang Yu (yugang@ihep.ac.cn) (On behalf of BESIII Collaboration)

Institute of High Energy Physics (IHEP)

August 18, 2021

The 13th National Conference on Particle Physics

Introduction

Introduction

- Charmonuim resonances are located in the transition region of perturbative QCD and non-perturbative QCD, various theoretical models make predictions for charmonium decays.
- Non-vector states still mostly unknown.
- Experimental studies of charmonium decays are essential for understanding the structures and decay mechanisms of charmonium states.
- New results provide more information for theory.

BESIII data sets

Data sets at BESIII

- Largest J/ψ , $\psi(3686)$ data sets in the world.
- More than 20 fb⁻ above 4.0 GeV.

- We can do:
 - Research charmonium physics
 - light hadron spectroscopy
 - new hadronic states
 - D-physics and τ -physics

- Recent results on the charmonuim decays:
- $\psi(3686)$ decays
 - $\psi(3686) \rightarrow \bar{\Sigma^0}\Lambda + c.c$
 - $\psi(3686) \rightarrow K_s X$

- χ_{cJ} decays
 - $\chi_{cJ} \rightarrow \bar{\Lambda}\Lambda$ • $\chi_{cJ} \rightarrow nK_S^0\bar{\Lambda} + c.c.$

$\psi(3686) \rightarrow \overline{\Sigma^0}\Lambda + c.c.$ and $\chi_{cd} \rightarrow \overline{\Lambda}\Lambda$

- **Data Set :** 09 and 12 ($4.48 \times 10^8 \psi(3686)$ data)
- Decay Channel: $\psi(3686) \rightarrow \overline{\Sigma^0}\Lambda \rightarrow (\gamma \overline{\Lambda})(p\pi^-)$.
- Measurement Result:
 - $\mathcal{B}(\psi(3686) \rightarrow \bar{\Sigma^0}\Lambda + c.c.) \times 10^6$ = 1.60 ± 0.31 ± 0.13 ± 0.58 $\psi(3686)$ -continuum interference \leftarrow

- Smaller than the result using CLEO-c data $(12.3 \pm 2.4)^{a} \times 10^{-6}$.
- Consisting with^b theoretical prediction $(4.0 \pm 2.3)^{c} \times 10^{-6}$.

^aDobbs, S.; Seth, K. K., et al. <u>Phys. Rev. D</u> 2017, *96*, 092004.
 ^bwithin 1 σ or 2σ, depending on the ψ (3686) continuum interference.
 ^cZhu, K.; Mo, X.-H., et al. <u>Int. J. Mod. Phys. A</u> 2015, *30*, 1550148.

$\psi(3686) \rightarrow \overline{\Sigma^0}\Lambda + \overline{c.c.}$ and $\chi_{cJ} \rightarrow \overline{\Lambda}\Lambda^-$

- **Data Set : 09 and 12 (** $4.48 \times 10^8 \psi(3686)$ data)
- Decay Channel: $\psi(3686) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \Lambda \overline{\Lambda}$

 $\Lambda(\bar{\Lambda}) \to p\pi^-(\bar{p}\pi^+).$

Mode	$\mathcal{B}(\psi(3686) o \gamma \chi_{cJ})$	${\cal B}(\chi_{lpha J} o \Lambda ar\Lambda)(imes 10^{-4})$	
	$ imes {\cal B} \chi_{ m cJ} ightarrow \Lambda ar{\Lambda})(10^{-5})$	This work	PDG
χ_{c0}	$3.56 \pm 0.10 \pm 0.10$	$3.64 \pm 0.10 \pm 0.10 \pm 0.07$	3.27 ± 0.24
χ_{c1}	$1.28 \pm 0.06 \pm 0.06$	$1.31 \pm 0.06 \pm 0.06 \pm 0.03$	1.14 ± 0.11
χ_{c2}	$1.82 \pm 0.08 \pm 0.17$	$1.91 \pm 0.08 \pm 0.17 \pm 0.04$	1.84 ± 0.15

Consisting with the world average values, but not with the theoretical predictions^{1,2,3}

Measurement Results:

¹Rong Gang, P.; Bin Song, Z., et al. <u>Eur. Phys. J. A</u> **2005**, *23*, 129–133.

²Liu, X.-H.; Zhao, Q. <u>J. Phys. G</u> 2011, *38*, 035007.

³S, W. <u>Eur. Phys. J. C</u> 2000, 643–671.

$\psi(3686) \rightarrow K^0_S X(X = anything)$

$\psi(3686) \rightarrow K^0_S X(X = anything)$

$$\psi(3686) \rightarrow K^0_S X(X = anything)$$

Measurement Results:

- The observed cross section for $e^+e^- \rightarrow K^0_S X$ are measured from \sqrt{s} = 3.64 to 3.71 GeV.
- $\Gamma_{\psi(3686)}^{ee} \mathcal{B}(\psi(3686) \to K_S^0 X)$ and $\mathcal{B}(\psi(3686) \to K_S^0 X)$ is first measured to be $(373.8 \pm 6.7 \pm 20.0)$ eV and $(16.04 \pm 0.29 \pm 0.90)\%$, respectively. ⁴
- PDG gives the BF of $\psi(3686)$ decays to exclusive K_S^0 is $\sim 5.95\%^5$.
- Many undiscovered exclusive channel for $\psi(3686)$ decays to final states containing K_S^0 .

⁴Assuming $\Gamma_{\psi(3686)}^{ee} = (2.33 \pm 0.04)$ keV.

⁵Tanabashi, M.; Hagiwara, K., et al. <u>Phys. Rev. D</u> **2018**, *98*, 030001.

$\chi_{cJ} \rightarrow n K_S^0 \bar{\Lambda} + c.c.$

The decay of $\chi_{cJ} \rightarrow n K_S^0 \overline{\Lambda} + c.c.$ is observed for the first time and the branch fractions are measured.

▶ Iso-spin symmetry is tested by $\chi_{cJ} \rightarrow pK^-\bar{\Lambda} + c.c.^6$, there is no obvious iso-spin violation.

⁶Ablikim, M.; Achasov, M. N., et al. Phys. Rev. D 2013, 87, 012007.

Summary

- ► The largest data sets of $\psi(3686) / J/\psi$ in the world has been collected by BESIII, not only vector decays, but also to study h_c , χ_{cJ} and η_{2s} , et. al, decays of which are mostly unknown.
- The datasets above the DD threshold can shed new light on charmonium decays and hint at possible connections between XYZ states and conventional charmonia.
- In this talk, 3 analysis are discussed
 - Measurements of $\psi(3686) \rightarrow \bar{\Sigma^0}\Lambda + c.c.$ and $\chi_{cJ} \rightarrow \Lambda \bar{\Lambda}$, published to PRD
 - Measurement of inclusive BF for $\psi(3686) \rightarrow K^0_S X$, accepted to PLB
 - Observation of $\chi_{cJ}
 ightarrow n K^0_S \bar{\Lambda} + c.c.$, submitted to JHEP
- ► BESIII collected more $\psi(3686)$ data (about 3.4fp⁻¹ @2021), provides a better opportunity for research charmonium.
- More analysis is ongoing with the full $\psi(3686)$ data sets.

Thanks for your attention !!!