Vector charmonium(-like) states at BESIII

Houbing Jiang (Shandong University) on behalf of BESIII Collaboration

2021/8/16

Outline

- Introduction;
- Recent vector charmonium(-like) results at BESIII:

1.
$$e^+e^- \rightarrow \gamma + \chi_{cJ}$$
;

2.
$$e^+e^- \to X + J/\psi$$
;

3.
$$e^+e^- \to X + \eta_c$$
;

4.
$$e^+e^- \to X + \psi(2S)$$
;

5.
$$e^+e^- \rightarrow Light\ hadrons$$
;

6.
$$e^+e^- \rightarrow$$
 open charm;

Summary;

Introduction

- Vector Charmonium(-like) States can be produced directly by electron-positron annihilation;
- Including the data collected in the recent two years, there are a total of ~ 20 fb-1 from 3.8 ~ 4.7 GeV;
- Method of studying vector Charmonium(-like) States at BESIII: measured cross section line-shape, search for structures;
- Search for more decay modes will be helpful to understand their properties;

$$e^+e^- \to \gamma \chi_{c0,c1,c2}$$
 arXiv: 2107.03604

- The processes of $e^+e^- \rightarrow \gamma \chi_{c1,c2}$ are observed for the first time @ 4.178 GeV (7.6 σ and 6.0 σ);
- Components in the cross section fit:
 - $e^+e^- \to \gamma \chi_{c1}$: $\psi(3686)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$ + continuum contribution; $\psi(4040)$ (3.3 σ), $\psi(4160)$ (3.7 σ), continuum (6.7 σ);
- The measured cross section are consistent with potential model predictions, except for $B[\psi(4160) \rightarrow \gamma \chi_{c2}]$ is three order of magnitude higher than potential model predictions(~10⁻⁷);

$$e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$$

arXiv: 2107.03604

$$\mathcal{L} = 15 fb^{-1}$$
, $\sqrt{s} = 4.0 - 4.6 \text{ GeV}$

- $\chi_{c0} \to K^+ K^- \pi^+ \pi^- / 2(\pi^+ \pi^-) / K^+ K^-;$
- No obvious signal of $e^+e^- \rightarrow \gamma \chi_{c0}$;
- The UL is consistent with potential model expectations;

$e^+e^- \to \eta J/\psi$ PRD 102, 031101 (2020)

$$\sigma^{B}(\sqrt{s}) = |C_{0}\sqrt{\Phi(\sqrt{s})} + e^{i\phi_{1}}B_{1}(\sqrt{s}) + e^{i\phi_{2}}B_{2}(\sqrt{s}) + e^{i\phi_{3}}B_{3}(\sqrt{s})|^{2},$$

$$\mathcal{L} = 13.1 \ fb^{-1}$$
, $\sqrt{s} = 3.8 - 4.6 \ \text{GeV}$

- Three structures : 4.04 GeV($\psi(4040)$), 4.22GeV and 4.36GeV;
- The measured resonant parameters are consistent with Y(4220), Y(4360);
- Observation of $Y(4220) \rightarrow \eta J/\psi$, significantly higher than the $\psi(4160) \rightarrow \eta J/\psi$ (8.1 σ);
- Observation of $Y(4360) \rightarrow \eta J/\psi$ with significance of 6.0 σ ;

 $e^+e^- \to \eta' J/\psi$ PRD 101, 012008 (2020)

Dressed cross sections

$$\mathcal{L} = 11 \ fb^{-1}$$
, $\sqrt{s} = 4.18 - 4.6 \ \text{GeV}$

- The $e^+e^- \rightarrow \eta' J/\psi$ cross section cannot be properly described by a single $\psi(4160)$ or $\psi(4260)$ resonance (confidence level of $2.9 \times 10^{-4} / 1.5 \times 10^{-8}$);
- While a coherent sum of $\psi(4160)$ and $\psi(4260)$ offers a better description(confidence level of 6.1%);
- The significances for the $\psi(4160)$ and $\psi(4260)$ are 6.3σ and 4.0σ .
- The cross section of $e^+e^- \to \eta' J/\psi$ is about an order of magnitude lower than that of $e^+e^- \to \eta J/\psi$;

$$e^+e^- \to \eta_c \pi^+\pi^-\pi^0$$
 PRD 103 (2021), 032006

Born cross sections

$$\mathcal{L} = 7.3 fb^{-1}$$
, $\sqrt{s} = 4.18 - 4.6$ GeV;

- The process $e^+e^- \to \eta_c \pi^+ \pi^- \pi^0$ is observed for the first time with significance of 5.2 σ ;
- The energy-dependent Born cross section measured to be in agreement with the hypothesis of the production of Y (4260) $\rightarrow \eta_c \pi^+ \pi^- \pi^0$;
- While no signal is found for a charged $Z_c^{\pm} \rightarrow \eta_c \pi^{\pm}$ state;

 $e^+e^- \to \eta \ \psi(2S)$ arXiv: 2103.01480

Born cross sections

$$\mathcal{L} = 5.2 fb^{-1}$$
, $\sqrt{s} = 4.23 - 4.6 \text{ GeV}$

- For the first times, $e^+e^- \rightarrow \eta \ \psi(2S)$ are observed with a statistical significance of 5σ ;
- Impossible to extract the couplings of the Y states to from a fit to the cross sections, due to the limited statistics;
- Further experimental studies with higher statistics are needed to draw a clear conclusion on the structure in $e^+e^- \rightarrow \eta \psi(2S)$;

$$\mathcal{L} = 20.1 fb^{-1}$$
, $\sqrt{s} = 4.0 - 4.7 \text{ GeV}$

- The measured cross section is consistent with previous results, but with much improved precision;
- Fit function: $\sigma^{\text{dressed}}(\sqrt{s}) = \left| \sum_{k} e^{i\phi_k} \cdot BW_k(s) + e^{i\phi_{\text{cont}}} \cdot \psi_{\text{cont}} \right|^2$
 - \succ Y(4220), Y(4390), Y(4660) and a non-resonant contribution;
- The fit results confirm the existence of four contributions;

$$e^+e^- \rightarrow \phi \Lambda \overline{\Lambda}$$

arXiv: 2104.08754

$$\mathcal{L} = 20 \ fb^{-1}$$
, $\sqrt{s} = 3.5 - 4.6 \ \text{GeV}$

- It is clear that the lineshape cannot be simply described with a continuum process parameterized as $1/s^n$ (n = 2.2 ± 0.4);
- Peaking structures with statistical significances of 4.2σ and 3.1σ are seen around $\sqrt{s} = 4.23$ and 4.36 GeV, respectively.

$e^+e^- \rightarrow Light\ hadrons$

$$e^{+}e^{-} \rightarrow 2(p\bar{p})$$

 $\mathcal{L} = 15 \, fb^{-1} \,, \, \sqrt{s} = 4.0 \, - 4.6 \, \mathrm{GeV}$

Significances of $\psi(4160)$: 0.8σ ; Significances of Y(4220): 1.7σ ;

no evidence for a resonant contribution
$$Y/\psi \to p\bar{p}\eta/p\bar{p}\omega$$
;

$e^+e^- \rightarrow open \ charm$

$$e^{+}e^{-} \rightarrow D_s^{+}D_{s1}(2460)^{-}/D_s^{*+}D_{s1}(2460)^{-} + c.c.$$

 $\mathcal{L} = 0.9/0.6 \ fb^{-1}$, $\sqrt{s} = 4.467/4.590 - 4.6 \ GeV$ No obvious charmonium or charmonium-like structure is seen in the measured cross section;

arXiv:2106.02298

$$e^+e^- \to D_s^{*+}D_{s0}(2317)^-/D_s^{*+}D_{s1}(2460)^-/D_s^{*+}D_{s1}(2536)^-+c.c.$$

$$\mathcal{L} = 4.4/2.7 \, fb^{-1}$$
, $\sqrt{s} = 4.6/4.66 - 4.7 \, \text{GeV}$

No structures are observed in cross-section distributions for any of the processes

Summary

- A lot of progress in study of Vector Charmonium(-like) States in recent year at BESIII;
- Possible "new" decay modes of Y(4220)/Y(4360)/Y(4390)/Y(4660) - ψ (4040)/ ψ (4160) are studied;
- More results about Vector Charmonium(-like) States will come soon!

Thanks for your attention

Back Up

BEPCII/BESIII

- Double rings;
- Ecm= 2.0-4.6 GeV (2.0-4.9 GeV since 2019);
- Energy spread: $\Delta E \approx 5 \times 10^{-4} \text{GeV}$;
- Design luminosity @Ecm= 3.77 GeV: $^{\sim}1 \times 10^{33} \ cm^{-2} s^{-1}$ (reached 2016);
- 2009~ today: BESIII physics runs;

16

BESIII detector

Main Drift Chamber

 σ_p/p <0.5% (@1GeV) (1T) $\sigma_{xy} \sim 120~\mu m$ $dE/dx \sim 6\%$

Time Of Flight

 $\sigma_t < 68ps$ (barrel) $\sigma_t < 70ps$ (endcap MRPC)

Electromagnetic Calorimeter

 $\sigma_E/E <$ 2.5% (@1GeV) $\sigma_{xy} \sim 6mm \quad (@1\text{GeV})$

Muon Counter

 $\sigma_{\rm spatial} < 2cm$

Chin. Phys. C 44 (2020) 4, 040001

$$e^+e^- \to \mu^+\mu^-$$
 PRD 102, 112009 (2020)

Dressed cross section

subtracted both the continuum and $\psi(3686) \rightarrow \mu^{+}\mu^{-}$

$\mathcal{L} = 13.2 fb^{-1}$, $\sqrt{s} = 3.8 - 4.6 \text{ GeV}$

- For the first times, directly measured the muonic widths, branching fractions and the phases of the decay amplitudes;
- A structure S(4220): $M_{S(4220)} = 4216.7 \pm 8.9 \pm 4.1 \text{ MeV}/c^2$, $\Gamma_{S(4220)}^{\text{tot}} = 47.2 \pm 22.8 \pm 10.5 \text{ MeV}$ with significance of 3.9σ ;