Vector charmonium(-like) states at BESIII

Houbing Jiang (Shandong University) on behalf of BESIII Collaboration

2021/8/16

Outline

- Introduction;
- Recent vector charmonium(-like) results at BESIII:

1. $e^{+} e^{-} \rightarrow \gamma+\chi_{c J}$;
2. $e^{+} e^{-} \rightarrow X+J / \psi$;
3. $e^{+} e^{-} \rightarrow X+\eta_{c}$;
4. $e^{+} e^{-} \rightarrow X+\psi(2 S)$;
5. $e^{+} e^{-} \rightarrow$ Light hadrons;
6. $e^{+} e^{-} \rightarrow$ open charm;

- Summary;

Introduction

- Vector Charmonium(-like) States can be produced directly by electron-positron annihilation;
- Including the data collected in the recent two years, there are a total of $\sim 20 \mathrm{fb}-1$ from $3.8 \sim 4.7 \mathrm{GeV}$;
- Method of studying vector Charmonium(-like) States at BESIII: measured cross section line-shape, search for structures;
- Search for more decay modes will be helpful to understand their properties;

$$
e^{+} e^{-} \rightarrow \gamma \chi_{c 0, c 1, c 2}
$$

- The processes of $e^{+} e^{-} \rightarrow \gamma \chi_{c 1, c 2}$ are observed for the first time @ $4.178 \mathrm{GeV}(7.6 \sigma$ and $6.0 \sigma)$;
- Components in the cross section fit:
$>e^{+} e^{-} \rightarrow \gamma \chi_{c 1}: \psi(3686), \psi(3770), \psi(4040), \psi(4160)+$ continuum contribution;
$\psi(4040)(3.3 \sigma), \psi(4160)(3.7 \sigma)$, continuum (6.7σ);
$>e^{+} e^{-} \rightarrow \gamma \chi_{c 2}: \psi(3686), \psi(3770), \psi(4040), \psi(4160)+Y(4360)$;
$\psi(4040)(2.0 \sigma), \psi(4160)(4.6 \sigma), Y(4360)(5.8 \sigma)$;
- The measured cross section are consistent with potential model predictions, except for $\mathrm{B}[\psi(4160) \rightarrow$ $\gamma \chi_{c 2}$] is three order of magnitude higher than potential model predictions $\left(\sim 10^{-7}\right)$;

$$
e^{+} e^{-} \rightarrow \gamma \chi_{c 0, c 1, c 2}
$$

$\mathcal{L}=15 f b^{-1}, \sqrt{s}=4.0-4.6 \mathrm{GeV}$

- $\chi_{c 0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} / 2\left(\pi^{+} \pi^{-}\right) / K^{+} K^{-}$;
- No obvious signal of $e^{+} e^{-} \rightarrow \gamma \chi_{c 0}$;
- The UL is consistent with potential model expectations;

$$
e^{+} e^{-} \rightarrow \eta J / \psi \quad \text { PRD 102,031101 (2020) }
$$

$$
\mathcal{L}=13.1 f^{-1}, \sqrt{s}=3.8-4.6 \mathrm{GeV}
$$

- Three structures : 4.04 GeV $(\psi(4040)), 4.22 \mathrm{GeV}$ and 4.36 GeV ;
- The measured resonant parameters are consistent with Y(4220), Y(4360);
- Observation of $\mathrm{Y}(4220) \rightarrow \eta J / \psi$, significantly higher than the $\psi(4160) \rightarrow \eta J / \psi(8.1 \sigma)$;
- Observation of $\mathrm{Y}(4360) \rightarrow \eta J / \psi$ with significance of 6.0σ;

$$
e^{+} e^{-} \rightarrow \eta^{\prime} J / \psi
$$

Dressed cross sections

$\mathcal{L}=11 \mathrm{fb}^{-1}, \sqrt{s}=4.18-4.6 \mathrm{GeV}$

- The $e^{+} e^{-} \rightarrow \eta^{\prime} J / \psi$ cross section cannot be properly described by a single $\psi(4160)$ or $\psi(4260)$ resonance (confidence level of $\left.2.9 \times 10^{-4} / 1.5 \times 10^{-8}\right)$;
- While a coherent sum of $\psi(4160)$ and $\psi(4260)$ offers a better description(confidence level of 6.1%) ;
- The significances for the $\psi(4160)$ and $\psi(4260)$ are 6.3σ and 4.0σ.
- The cross section of $e^{+} e^{-} \rightarrow \eta^{\prime} J / \psi$ is about an order of magnitude lower than that of $e^{+} e^{-} \rightarrow \eta J / \psi$;

$$
e^{+} e^{-} \rightarrow \eta_{c} \pi^{+} \pi^{-} \pi^{0} \quad \text { PRD } 103 \text { (2021), } 032006
$$

Born cross sections

$\mathcal{L}=7.3 \mathrm{fb}^{-1}, \sqrt{s}=4.18-4.6 \mathrm{GeV} ;$

- The process $e^{+} e^{-} \rightarrow \eta_{c} \pi^{+} \pi^{-} \pi^{0}$ is observed for the first time with significance of 5.2σ;
- The energy-dependent Born cross section measured to be in agreement with the hypothesis of the production of Y (4260) \rightarrow $\eta_{c} \pi^{+} \pi^{-} \pi^{0} ;$
- While no signal is found for a charged $Z_{c}^{ \pm} \rightarrow \eta_{c} \pi^{ \pm}$state;

$$
e^{+} e^{-} \rightarrow \eta \psi(2 S) \quad \text { arXiv: } 2103.01480
$$

Born cross sections

$\mathcal{L}=5.2 f b^{-1}, \sqrt{s}=4.23-4.6 \mathrm{GeV}$

- For the first times, $e^{+} e^{-} \rightarrow \eta \psi(2 S)$ are observed with a statistical significance of 5σ;
- Impossible to extract the couplings of the Y states to from a fit to the cross sections, due to the limited statistics;
- Further experimental studies with higher statistics are needed to draw a clear conclusion on the structure in $e^{+} e^{-} \rightarrow$ $\eta \psi(2 S)$;

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S) \quad \text { arXiv:2107.09210 }
$$

$$
\mathcal{L}=20.1 \mathrm{fb}^{-1}, \sqrt{s}=4.0-4.7 \mathrm{GeV}
$$

- The measured cross section is consistent with previous results, but with much improved precision;
- Fit function: $\sigma^{\text {dressed }}(\sqrt{s})=\left|\sum_{k} e^{i \phi_{k}} \cdot B W_{k}(s)+e^{i \phi_{\text {cont }}} \cdot \psi_{\text {cont }}\right|^{2}$
> $\mathrm{Y}(4220), \mathrm{Y}(4390), \mathrm{Y}(4660)$ and a a non-resonant contribution;
- The fit results confirm the existence of four contributions;

$$
e^{+} e^{-} \rightarrow \phi \Lambda \bar{\Lambda} \quad \text { arXiv: } 2104.08754
$$

$$
\mathcal{L}=20 f b^{-1}, \sqrt{s}=3.5-4.6 \mathrm{GeV}
$$

- It is clear that the lineshape cannot be simply described with a continuum process parameterized as $1 / s^{n}(\mathrm{n}=$ $2.2 \pm 0.4)$;
- Peaking structures with statistical significances of 4.2σ and 3.1σ are seen around $\sqrt{ } \mathrm{s}=4.23$ and 4.36 GeV , respectively.

$e^{+} e^{-} \rightarrow$ Light hadrons

$\mathcal{L}=14.7 \mathrm{e}^{+} e^{-} \rightarrow p \bar{p} \eta / p \bar{p} \omega, \sqrt{s}=3.77-4.6 \mathrm{GeV}$
no evidence for a resonant contribution $\mathrm{Y} / \psi \rightarrow p \bar{p} \eta / p \bar{p} \omega$;

$e^{+} e^{-} \rightarrow$ open charm

Phys. Rev. D 101, 112008 (2020)

$e^{+} e^{-} \rightarrow D_{S}^{+} D_{S 1}(2460)^{-} / D_{s}^{*+} D_{s 1}(2460)^{-}+$c.c.
$\mathcal{L}=0.9 / 0.6{f b^{-1}}^{-1}, \sqrt{s}=4.467 / 4.590-4.6 \mathrm{GeV}$
No obvious charmonium or charmonium-like
structure is seen in the measured cross section;

$\mathcal{L}=4.4 / 2.7 \mathrm{fb}^{-1}, \sqrt{s}=4.6 / 4.66-4.7 \mathrm{GeV}$
No structures are observed in cross-section distributions for any of the processes

Summary

- A lot of progress in study of Vector Charmonium(-like) States in recent year at BESIII;
- Possible "new" decay modes of $\mathrm{Y}(4220) / \mathrm{Y}(4360) / \mathrm{Y}(4390) / \mathrm{Y}(4660)-\psi(4040) /$ $\psi(4160)$ are studied;
- More results about Vector Charmonium(-like) States will come soon!

Back Up

BEPCII/BESIII

- Double rings;
- $\mathrm{Ecm}=2.0-4.6 \mathrm{GeV}(2.0-4.9 \mathrm{GeV}$ since 2019);
- Energy spread: $\Delta E \approx 5 \times$ $10^{-4} \mathrm{GeV}$;
- Design luminosity @Ecm= 3.77 $\mathrm{GeV}: \sim 1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (reached 2016);
- 2009~ today: BESIII physics runs;

BESIII detector

Main Drift Chamber
$\sigma_{p} / p<0.5 \%$ (@1GeV) (1T)
$\sigma_{x y} \sim 120 \mu m$
$d E / d x \sim 6 \%$

Time Of Flight
$\sigma_{t}<68 p s($ barrel $)$
$\sigma_{t}<70 p s$ (endcap MRPC)

Electromagnetic Calorimeter
 $$
\begin{gathered} \sigma_{E} / E<2.5 \%(@ 1 \mathrm{GeV}) \\ \sigma_{x y} \sim 6 \mathrm{~mm} \quad(@ 1 \mathrm{GeV}) \end{gathered}
$$

Chin.Phys.C 44 (2020) 4, 040001

Muon Counter
$\sigma_{\text {spatial }}<2 \mathrm{~cm}$

BESIII

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}
$$

Dressed cross section

subtracted both the continuum and $\psi(3686) \rightarrow \mu^{+} \mu^{-}$
$\sigma_{\mu^{+} \mu^{-}}^{\mathrm{D}}(s(1-x))=\left|A_{\mathrm{cnt}}+\sum_{k=1}^{9} e^{i \phi_{R_{k}}} A_{R_{k}}+e^{i \phi_{S}} A_{S}\right|^{2}$
$\mathcal{L}=13.2 \mathrm{fb}^{-1}, \sqrt{s}=3.8-4.6 \mathrm{GeV}$

- For the first times, directly measured the muonic widths, branching fractions and the phases of the decay amplitudes;
- A structure $S(4220): M_{S(4220)}=4216.7 \pm 8.9 \pm 4.1 \mathrm{MeV} / c^{2}, \Gamma_{\mathrm{S}(4220)}^{\mathrm{tot}}=47.2 \pm 22.8 \pm 10.5 \mathrm{MeV}$ with significance of 3.9σ;

