Non－Vector charmonium－like studies at BESIII

Yunxuan Song（宋昀轩）

Peking University
University of Chinese Academy of Sciences
（On behalf of the BESIII collaboration）

Outline

\rightarrow Introduction
\rightarrow Observation of charged $Z_{c s}(3985)^{-}$
$e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$
\rightarrow Observation of threshold enhancement of $\Lambda \bar{\Lambda}$

$$
e^{+} e^{-} \rightarrow \phi \Lambda \bar{\Lambda}
$$

\rightarrow Search for $X(3872)$ state
－$e^{+} e^{-} \rightarrow \pi^{0} X(3872) \gamma$
\rightarrow Search for new decay modes of $\psi_{2}(3823)$
－$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}(3823)$
－$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \psi_{2}(3823)$

New forms of hadron

■ Conventional hadrons consist of 2 or 3 quarks：
Naive Quark Model：

```
meson
```

（q） \bar{q}
（q）q
q． baryon

■ QCD predicts the new forms of hadrons：
－Multi－quark states ：Number of quarks $>=4$
－Hybrids：qव̄g，qqqg ．．．
－Glueballs ：gg，ggg ．．．

BEPCII and BESIII

BEPCII：

－First collision in 2008，physics run in 2009
－Energy region： $2.0-4.95 \mathrm{GeV}$
－Designed luminosity： $1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{1} @ \psi(3770)$ reach in April 2016

MDC
－\quad small cell \＆Gas， $\mathrm{He} / \mathrm{C}_{3} \mathrm{H}_{8}$ （60／40）
－$\sigma_{x y}=120 \mu \mathrm{~m}$
－$\sigma_{\mathrm{p}} / \mathrm{p}=0.5 \%$＠ $1 \mathrm{GeV} / \mathrm{c}$
－ $\mathrm{dE} / \mathrm{dx}=6 \%$
TOF
－$\sigma_{\mathrm{t}}=80 \mathrm{ps}$（Barrel） 60 ps （Endcap）

EMC：

－ $\mathrm{CsI}(\mathrm{Tl})$
－$\Delta \mathrm{E} / \mathrm{E}=2.5 \%$＠ 1 GeV
－$\sigma_{\mathrm{z}}=0.6 \mathrm{~cm}$ MUC
－ 9 layers RPC for barrel
－ 8 layers RPC for endcap Superconducting magnet（1T）

Observation of $Z_{c s}(3985)^{-}$

$\rightarrow e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$
＊3．7fb ${ }^{-1}$ data accumulated at from 4．628， $4.641,4.661,4.681$ and 4.698 GeV in 2020.
＊Partial reconstruction of K^{+}and D_{s}^{-}．
＊Signature in the recoils mass spectrum of $K^{+} D_{s}^{-}$to identify the precess of $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

Observation of $Z_{c s}(3985)^{-}$

$\checkmark D_{s}^{-}$reconstructed with $K^{+} K^{-} \pi^{+}\left(\phi \pi\right.$ or $\left.K^{*} K\right)$ and $K_{s}^{0} K^{-}$．
\checkmark Both decay modes can survive the selection．
\checkmark Data driven background description ：
Wrong Sign（WS）combination of D_{s}^{-}and K^{-}．
\checkmark Absolute contribution in signal region determined from a fit to $R M\left(K^{+} D_{s}^{-}\right)$．

Observation of $Z_{c s}(3985)^{-}$

\checkmark Conventional charmed mesons can not describe the enhancement below $4.0 \mathrm{GeV} / \mathrm{c}^{2}$ ．
（With a sufficient study for all possible $D_{(s)}^{* *}$ background and their interference effect，see Appendix．）
\checkmark Assume the structure as a $D_{s}^{-} D^{* 0} / D_{s}^{*-} D^{0}$ resonance，denoting it as the $Z_{c s}(3985)^{-}$．
\checkmark A fit of $J^{P}=1^{+}$S－wave Breit－Wigner with mass dependent width returns：

$$
\begin{gathered}
M=3985.2_{-2.0}^{+2.1} \pm 1.7 \mathrm{MeV} / \mathrm{c}^{2} \\
\Gamma=13.8_{-5.2}^{+8.1} \pm 4.9 \mathrm{MeV}
\end{gathered}
$$

\checkmark Global significance：$>5.3 \sigma$
First candidate of the hidden－charm tetraquark with strangeness

Observation of $Z_{c s}(3985)^{-}$

\checkmark Simultaneous fit to the five energy points．
\checkmark Largest cross sections around 4.681 GeV ．

Discussions on the nature of $Z_{c s}(3985)^{-}$

\rightarrow Various interpretations are possible for the structure
－Molecule
＊$D_{s 2}^{*}(2573)^{+} D_{s}^{*-}$ threshold kinematic effects／reflecting
＊Re－scattering／Triangle singularity．
＊Mixture of molecular and tetraquark．
$\rightarrow Z_{c s}(3985)$ from $e^{+} e^{-}$annihilations and $Z_{c s}(4000)$ from B
 decays．
－$Z_{\text {cs }}(3985)^{-}:$
－$Z_{\text {cs }}(4000)^{-}$：
$J^{P}=1^{+}$
$M=3985.2_{2.0}^{+2.1} \pm 1.7 \mathrm{MeV} / \mathrm{c}^{2}$
$\Gamma=13.8_{-5.2}^{+8.1} \pm 4.9 \mathrm{MeV}$

Observation of threshold enhancement in $e^{+} e^{-} \rightarrow \phi \Lambda \bar{\Lambda}$

arXiv： 2104.08754
$\rightarrow \eta(2225)$ interpreted to be $\Lambda \bar{\Lambda}$ bound states．（PRD87，054034）
\rightarrow Threshold enhancement of baryon anti－baryon pair observed in $J / \psi \rightarrow \gamma p \bar{p}$（PRL91， 022001），$B \rightarrow K p \bar{p}(P L B 659,80), B^{0} \rightarrow K \Lambda \bar{\Lambda}$（PRL79，052006）．
$\rightarrow 28$ data sets with $\sqrt{s}=3.51 \sim 4.6 \mathrm{GeV}$ ，with total luminosity $19.462 \mathrm{fb}^{-1}$ ．
\rightarrow Events reconstructed with $\phi \rightarrow K^{+} K^{-}, \Lambda \rightarrow p \pi^{-}\left(\right.$or $\left.\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}\right)$．
\rightarrow Breit－Wigner parametrization：$M=(2262 \pm 4 \pm 28) \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=(72 \pm 5 \pm 43) \mathrm{MeV}$ ． （25\％）
\rightarrow Angular distribution analysis：$J^{P C}=1^{++}$or 2^{-+}or 2^{++}

$\rightarrow 0^{-+}$rejected with significance of 7σ ．
\rightarrow Nambu model is rejected．
\rightarrow The enhancement consistent with that observed in $B^{0} \rightarrow K \Lambda \bar{\Lambda}$ by Belle．（PRL79，052006）．

Search for $Z_{c}(4020)^{0} \rightarrow X(3872) \gamma$

$\rightarrow e^{+} e^{-} \rightarrow \pi^{0} Z_{c}(4020)^{0} \rightarrow \pi^{0} X(3872) \gamma$ at energies from 4.178 to 4.600 GeV ．
\rightarrow The enhancement around 4.2 GeV in the $e^{+} e^{-} \rightarrow X(3872) \gamma$ and the observation of the $Y(4220)$ resonance in $e^{+} e^{-} \rightarrow \pi^{0} Z_{c}(3900)^{0}$ suggest the connections between $X-Y$ and $Y-Z$ states．
\rightarrow Connection between Z_{c} and X states in the $D \bar{D}^{*}$ molecule picture．
\rightarrow Branching fractions of $Z_{c}(4020)^{0} \rightarrow \gamma X(3872)$ and $Z_{c}(4020)^{ \pm} \rightarrow \pi^{ \pm} X(3872)$ are predicted with quite different results．［PRD99．054028］
\rightarrow No significant signal is found

$$
\rightarrow \frac{\mathscr{B}\left[Z_{c}(4020)^{0} \rightarrow X(3872) \gamma\right] \cdot \mathscr{B}\left[X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right]}{\mathscr{B}\left[Z_{c}(4020)^{0} \rightarrow\left(D^{*} \bar{D}^{*}\right)^{0}\right]}<0.24 \%(@ 4.23 \mathrm{GeV})
$$

FIG．2．The upper limits at the 90% C．L．on $\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} X(3872) \gamma\right) \cdot \mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)$（a）and $\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} Z_{c}(4020)^{0}\right)$ ． $\mathcal{B}\left(Z_{c}(4020)^{0} \rightarrow X(3872) \gamma\right) \cdot \mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)(b)$ for each energy point．

$\psi_{2}(3823)$

\rightarrow Evidence of $\psi_{2}(3823)$ from Belle experiment in $B \rightarrow\left(\psi_{2}(3823) \gamma \chi_{c 1}\right) K$ － $772 \times 10^{6} B \bar{B}$ events， 3.8σ ．

Phys．Rev．Lett．111，032001（2013）
＊$M=3823.1 \pm 1.8 \pm 0.7 \mathrm{MeV}, \Gamma_{\text {tot }}<24 \mathrm{MeV}$
\rightarrow Observed by BESIII experiment in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}(3823), \psi_{2}(3823) \rightarrow \gamma \chi_{c 1}$
－Scan data sample at $\sqrt{s}=4.23,4.26,4.36,4.42,4.60 \mathrm{GeV}, 6.2 \sigma$
＊$M=3821.7 \pm 1.3 \pm 0.7 \mathrm{MeV}, \Gamma_{\text {tot }}<16 \mathrm{MeV}$
Phys．Rev．Lett．115，011803（2015）
\rightarrow Decays of $\psi_{2}(3823)$ to $\gamma \chi_{c 1}, \pi^{+} \pi^{-} J / \psi, g g g, \gamma g g$ have been predicted by various theoretical work
＊$\Gamma_{\psi_{2}(3823) \rightarrow \gamma \chi_{c 1}} \sim 200-350 \mathrm{KeV}, \Gamma_{\psi_{2}(3823) \rightarrow \gamma \chi_{c 2}} \sim 40-90 \mathrm{KeV}$
＊$\Gamma_{\psi_{2}(3823) \rightarrow \gamma \chi_{c 3}} \sim 45-200 \mathrm{KeV}$

Phys．Rev．D．55，4001（1997）
Phys．Rev．Lett．89，162002（2002）
Phys．Rev．D．67，014027（2003）
Phys．Rev．D．69，054008（2004）
Phys．Rev．D．72，054026（2005）
Phys．Rev．D．79，094004（2009）
Phys．Rev．D．94，034005（2016）
Front．Phys．11，111402（2016）
arXiv：1501．08269

New decay modes of $\psi_{2}(3823)$

PRD103，L091102（2021）

\rightarrow Using process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}(3823)$ in a $9 f b^{-1}$ data sample between 4.3 and 4.6 GeV ，several decay channels are studied．
\rightarrow Evidence for the $\psi_{2}(3823) \rightarrow \gamma \chi_{c 2}$ is found． $\psi_{2}(3823) \rightarrow \gamma \chi_{c 1}$ is rediscovered，no significant $\psi_{2}(3823)$ signals for other channels．
$\rightarrow e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} \psi_{2}(3823)$ is found with 4.3σ ．
\rightarrow No significant $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{3}(3842)$ signals in all channels．

Summary

\rightarrow BESIII is successfully operating since 2008 and will continue to run for $5 \sim 10$ years．
\rightarrow Unique data samples from 3.8 GeV to 4.95 GeV ．Many exciting results have been published covering many aspects on $Z_{c(s)}$ states．
＊Observation of the $Z_{c s}$（3985）．
＊Threshold enhancement of $\Lambda \bar{\Lambda}$ is observed in $e^{+} e^{-} \rightarrow \phi \Lambda \bar{\Lambda}$ ．
＊New modes of $Z_{c}(4020)^{0} \rightarrow \gamma X(3872)$ is searched，but no significant signals are seen．
New modes of $\psi_{2}(3823)$ are searched，evidence for the $\psi_{2}(3823) \rightarrow \gamma \chi_{c 2}$ is found．
\rightarrow More searches for the new $Z_{c(s)}$ decay modes are in process．

