

Non-Vector charmonium-like studies at BESIII

Yunxuan Song (宋昀轩)

Peking University

University of Chinese Academy of Sciences

(On behalf of the BESIII collaboration)

1

Outline

- → Introduction
- → Observation of charged $Z_{cs}(3985)^-$

 $e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

→ Observation of threshold enhancement of $\Lambda\overline{\Lambda}$

 $e^+e^- \to \phi \Lambda \overline{\Lambda}$

→ Search for X(3872) state

* $e^+e^- \rightarrow \pi^0 X(3872)\gamma$

- → Search for new decay modes of $\psi_2(3823)$
 - * $e^+e^- \to \pi^+\pi^-\psi_2(3823)$
 - * $e^+e^- \to \pi^0 \pi^0 \psi_2(3823)$

New forms of hadron

Conventional hadrons consist of 2 or 3 quarks:

- QCD predicts the new forms of hadrons:
 - Multi-quark states : Number of quarks >= 4

BEPCII and BESIII

BEPCII:

- •First collision in 2008, physics run in 2009
- •Energy region: 2.0 4.95 GeV
- •Designed luminosity: $1x10^{33}$ cm⁻²s¹ @ $\psi(3770)$ reach in April 2016

MDC

- small cell & Gas, He/C₃H₈ (60/40)
- $\sigma_{xy} = 120 \ \mu m$
- $\sigma_p/p = 0.5\%$ @ 1 GeV/c
- dE/dx = 6%

TOF

• $\sigma_t = 80 \text{ ps (Barrel)}$ 60 ps(Endcap)

EMC:

- CsI(Tl)
- $\Delta E/E = 2.5\%$ @ 1 GeV
- $\sigma_z=0.6 \text{ cm}$ MUC
- 9 layers RPC for barrel
- 8 layers RPC for endcap Superconducting magnet (1T)

$$\rightarrow e^+e^- \rightarrow K^+(D_s^-D^{*0}+D_s^{*-}D^0)$$

- ✤ 3.7*fb*⁻¹ data accumulated at from 4.628,
 4.641, 4.661, 4.681 and 4.698 GeV in 2020.
- ***** Partial reconstruction of K^+ and D_s^- .
- Signature in the **recoils mass spectrum** of $K^+D_s^-$ to identify the precess of $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

- ✓ D_s^- reconstructed with $K^+K^-\pi^+$ ($\phi\pi$ or K^*K) and $K_s^0K^-$.
- \checkmark Both decay modes can survive the selection.
- \checkmark Data driven background description :

Wrong Sign (WS) combination of D_s^- and K^- .

✓ Absolute contribution in signal region determined from a fit to $RM(K^+D_s^-)$.

✓ Conventional charmed mesons can not describe the enhancement below 4.0 GeV/c².
 (With a sufficient study for all possible D^{**}_(s) background and their interference effect, see Appendix.)

- ✓ Assume the structure as a $D_s^- D^{*0} / D_s^{*-} D^0$ resonance, denoting it as the $Z_{cs}(3985)^-$.
- ✓ A fit of $J^P = 1^+$ S-wave Breit-Wigner with mass dependent width returns:

$$M = 3985.2^{+2.1}_{-2.0} \pm 1.7 \text{ MeV/c}^2$$
$$\Gamma = 13.8^{+8.1}_{-5.2} \pm 4.9 \text{ MeV}$$

✓ Global significance: > 5.3 σ

First candidate of the hidden-charm tetraquark with strangeness

- \checkmark Simultaneous fit to the five energy points.
- ✓ Largest cross sections around 4.681 GeV.

Discussions on the nature of $Z_{cs}(3985)^{-1}$

- → Various interpretations are possible for the structure
 - Molecule $\boldsymbol{\mathbf{x}}$
 - $D_{s2}^{*}(2573)^{+}D_{s}^{*-}$ threshold kinematic effects / reflecting *
 - Re-scattering / Triangle singularity.
 - Mixture of molecular and tetraquark.
- $\rightarrow Z_{cs}(3985)$ from e^+e^- annihilations and $Z_{cs}(4000)$ from B decays.
- $Z_{cs}(3985)^-$: $J^{P} = 1^{+}$ $\Gamma = 13.8^{+8.1}_{-5.2} \pm 4.9 \text{ MeV}$
 - $Z_{cs}(4000)^{-}$: $J^{P} = 1^{+}$ $M = 3985.2^{+2.1}_{-2.0} \pm 1.7 \text{ MeV}/c^{2}$ $J^{P} = 1^{+}$ $M = 4003 \pm 6^{+4}_{-24} \text{ MeV}/c^{2}$ $\Gamma = 131 \pm 15 \pm 26$ MeV

Observation of threshold enhancement in $e^+e^- \rightarrow \phi \Lambda \overline{\Lambda}$

arXiv: 2104.08754

- → $\eta(2225)$ interpreted to be $\Lambda\overline{\Lambda}$ bound states. (PRD87, 054034)
- → Threshold enhancement of baryon anti-baryon pair observed in $J/\psi \rightarrow \gamma p \overline{p}$ (PRL91, 022001), $B \rightarrow K p \overline{p}$ (PLB659, 80), $B^0 \rightarrow K \Lambda \overline{\Lambda}$ (PRL79, 052006).
- → 28 data sets with $\sqrt{s} = 3.51 \sim 4.6 \text{ GeV}$, with total luminosity 19.462 fb^{-1} .
- → Events reconstructed with $\phi \to K^+K^-$, $\Lambda \to p\pi^-$ (or $\overline{\Lambda} \to \overline{p}\pi^+$).
- → Breit-Wigner parametrization: $M = (2262 \pm 4 \pm 28) \text{ MeV/c}^2$, $\Gamma = (72 \pm 5 \pm 43) \text{ MeV}$. (25 σ)
- → Angular distribution analysis: $J^{PC} = 1^{++}$ or 2^{-+} or 2^{++}

- → 0^{-+} rejected with significance of 7σ .
- → Nambu model is rejected.
- → The enhancement consistent with that observed in $B^0 \to K\Lambda\overline{\Lambda}$ by Belle. (PRL79, 052006).

Search for $Z_c(4020)^0 \rightarrow X(3872)\gamma$

PRD104, 012001 (2021)

- → $e^+e^- \rightarrow \pi^0 Z_c(4020)^0 \rightarrow \pi^0 X(3872)\gamma$ at energies from 4.178 to 4.600 GeV.
- → The enhancement around 4.2 GeV in the $e^+e^- \rightarrow X(3872)\gamma$ and the observation of the Y(4220) resonance in $e^+e^- \rightarrow \pi^0 Z_c(3900)^0$ suggest the connections between X Y and Y Z states.
- → Connection between Z_c and X states in the $D\overline{D}^*$ molecule picture.
- → Branching fractions of $Z_c(4020)^0 \rightarrow \gamma X(3872)$ and $Z_c(4020)^{\pm} \rightarrow \pi^{\pm} X(3872)$ are predicted with quite different results. [PRD99.054028]
- → No significant signal is found $\frac{\mathscr{B}[Z_c(4020)^0 \to X(3872)\gamma] \cdot \mathscr{B}[X(3872) \to \pi^+\pi^- J/\psi]}{\mathscr{B}[Z_c(4020)^0 \to (D^*\overline{D}^*)^0]} < 0.24\% (@4.23\text{GeV})$

FIG. 2. The upper limits at the 90% C.L. on $\sigma(e^+e^- \rightarrow \pi^0 X(3872)\gamma) \cdot \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ (a) and $\sigma(e^+e^- \rightarrow \pi^0 Z_c(4020)^0) \cdot \mathcal{B}(Z_c(4020)^0 \rightarrow X(3872)\gamma) \cdot \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ (b) for each energy point.

$\psi_2(3823)$

- → Evidence of $\psi_2(3823)$ from Belle experiment in $B \rightarrow (\psi_2(3823)\gamma\chi_{c1})K$
 - * $772 \times 10^6 \ B\overline{B}$ events, 3.8σ . Phys.Rev.Lett. 111, 032001(2013)
 - * $M = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV}, \Gamma_{\text{tot}} < 24 \text{ MeV}$
- → Observed by BESIII experiment in $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823), \psi_2(3823) \rightarrow \gamma \chi_{c1}$
 - Scan data sample at $\sqrt{s} = 4.23, 4.26, 4.36, 4.42, 4.60 \text{ GeV}, 6.2\sigma$
 - * $M = 3821.7 \pm 1.3 \pm 0.7 \text{ MeV}, \Gamma_{\text{tot}} < 16 \text{ MeV}$ Phys.Rev.Lett. 115, 011803(2015)
- → Decays of $\psi_2(3823)$ to $\gamma \chi_{c1}$, $\pi^+ \pi^- J/\psi$, ggg, γgg have been predicted by various theoretical work

•
$$\Gamma_{\psi_2(3823) \to \gamma \chi_{c1}} \sim 200 - 350 \text{ KeV}, \Gamma_{\psi_2(3823) \to \gamma \chi_{c2}} \sim 40 - 90 \text{ KeV}$$

• $\Gamma_{\psi_2(3823) \to \gamma \chi_{c3}} \sim 45 - 200 \text{ KeV}$

Phys.Rev.D. 55, 4001(1997) Phys.Rev.Lett. 89, 162002(2002) Phys.Rev.D. 67, 014027(2003) Phys.Rev.D. 69, 054008(2004) Phys.Rev.D. 72, 054026(2005) Phys.Rev.D. 79, 094004(2009) Phys.Rev.D. 94, 034005(2016) Front.Phys. 11, 111402(2016) arXiv:1501.08269

PRD103, L091102 (2021)

New decay modes of $\psi_2(3823)$

- → Using process $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$ in a $9fb^{-1}$ data sample between 4.3 and 4.6 GeV, several decay channels are studied.
- → Evidence for the $\psi_2(3823) \rightarrow \gamma \chi_{c2}$ is found. $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ is rediscovered, no significant $\psi_2(3823)$ signals for other channels.
- → $e^+e^- \rightarrow \pi^0 \pi^0 \psi_2(3823)$ is found with 4.3 σ .
- → No significant $e^+e^- \rightarrow \pi^+\pi^-\psi_3(3842)$ signals in all channels.

→ Consistent with the theoretical predictions.

Channel	$N^{\psi_2(3823)}$	$\frac{\mathcal{B}(\psi_2(3823) \rightarrow \cdots)}{\mathcal{B}(\psi_2(3823) \rightarrow \cdots)}$
	(2.1 + 0.5)	$\overline{\mathcal{B}(\psi_2(3823)\to\gamma\chi_{c1})}$
$\gamma \chi_{c1}$	$\begin{array}{c} 63.1 \pm 8.5 \\ 8.8^{+4.3}_{-3.4} \end{array}$	$0.28^{+0.14}_{-0.11}\pm 0.02$
$\gamma \chi_{c2} \ \pi^+ \pi^- J/\psi$	<21.0	$0.28_{-0.11} \pm 0.02$ < 0.06
$\pi^0 \pi^0 J/\psi$	<10.0	< 0.11
$\eta J/\psi$	< 9.8	< 0.14
$\pi^0 J/\psi$	<5.6	< 0.03
$\gamma \chi_{c0}$	< 6.3	< 0.24

Summary

- → BESIII is successfully operating since 2008 and will continue to run for 5~10 years.
- → Unique data samples from 3.8 GeV to 4.95 GeV. Many exciting results have been published covering many aspects on $Z_{c(s)}$ states.
 - Observation of the $Z_{cs}(3985)$.
 - Threshold enhancement of $\Lambda\overline{\Lambda}$ is observed in $e^+e^- \to \phi\Lambda\overline{\Lambda}$.
 - ★ New modes of $Z_c(4020)^0 \rightarrow \gamma X(3872)$ is searched, but no significant signals are seen.
 - ★ New modes of $\psi_2(3823)$ are searched, evidence for the $\psi_2(3823) \rightarrow \gamma \chi_{c2}$ is found.
- → More searches for the new $Z_{c(s)}$ decay modes are in process.