

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测 器 BEPCII BESIII

最新结果 质子形状因子 能量扫描法 初态辐射法

北京谱仪 BESIII 上核子类时形状因子的最新结果

报告人: 夏磊

xial@mail.ustc.edu.cn

(代表 BESIII 合作组)

中国科学技术大学 核探测与核电子学国家重点实验室

中国物理学会高能物理分会第十二届全国粒子物理学术会议 2021 年 8 月 16 日 山东大学 青岛

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结

质子形状因子

器

BESIII

最新结果

质子形状因子 能量扫描法

初念辐射:

6. 经与属

3 最新结果

1 研究背景

4 总结与展望

2 加速器与探测器

研究背景

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景

极于的内部结束 质子形状因子

加速器与探器

BEPCII BESIII

最新结果 质子形状因子

那里扫徊云 初态辐射法 中子形状因子

结与展生

1 研究背景

- 核子的内部结构
- 质子形状因子

2 加速器与探测器

- 北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- ■质子形状因子
 - ■能量扫描法
 - ■初态辐射法
- ■中子形状因子
- 4 总结与展望

核子的内部结构

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊 研究背景 核子的内部结构

极于的内部结构 质子形状因子 加速器与探测 器

BESIII 最新结果

> 能量扫描法 初态辐射法 中子形状因子 结与展望

■ 为了理解质子内部结构,可以将一个点粒子投射到质子上,比如e⁻p 散射实验;或者采用e⁺e⁻ ⇔ pp̄ 湮没实验。

Detector

Scattered

M. Thomson, «Moder particle physics»

- 我们看到的质子形态取决于从 探针到质子传递的动量 q² 的 大小。
- 核子是具有内部结构的复合物体,在传递低 q²时,微扰理论(展开 ας)不起作用。
 - 核子结构必须在实验中测量!

核子的内部结构

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊 研究背景

核子的内部结构 质子形状因子 加速器与探测 器

BESIII 最新结果 质子形状即

> 能量扫描法 初志辐射法 中子形状因子

■ 为了理解质子内部结构,可以将一个点粒子投射到质子上,比如e⁻p散射实验;或者采用e⁺e⁻ ⇔ pp 湮没实验。

- 我们看到的质子形态取决于从 探针到质子传递的动量 q² 的 大小。
- 核子是具有内部结构的复合物体,在传递低 q²时,微扰理论(展开 ας)不起作用。
 - 核子结构必须在实验中测量!

核子形状因子

子的最新结果

报告人: 夏磊

- 核子形状因子 (FFs) 是核子的最基本的可观测量之一, 且和其内 部结构和动力学密切相关。有助于描述电荷和电流的空间分布。
- 核子 FF由类空过程 (SL) 和类时过程 (TL) 测量得到。
 - 质子的电磁顶点 Γ_u 描述强子流:

- $\checkmark \Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{p}}F_{2}(q^{2}), \checkmark q^{2} = 0$ \tag{1}:
- $\checkmark G_F(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2),$
- $\checkmark G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2),$
- $F_1 = F_2 = 1$, $G_F = 1$, $G_M = \mu_D$
- $\checkmark \quad \tau = \frac{q^2}{4m^2}, \quad \kappa_p = \frac{g_p 2}{2} = \mu_p 1.$
 - $F_1 = 0$, $F_2 = 1$, $G_F = 0$, $G_M = \mu_n$.
 - Sachs FF: G_F和 G_M, (F. J. Ernst *et al.*, PR **119**, 1105 (1960), R. G. Sachs, PR 126, 2256 (1962)), 可以理解为核子电荷和磁化强度的空间分 布在Breit frame的傅立叶变换: $\rho(\vec{r}) = \iiint \frac{d^3q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{F(\vec{q})} G_E(\vec{q}^2)$.

能量扫描法和初态辐射法

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

核子的内部结构 质子形状因子 加速器与探测

BEPCI BESIII 器新姓

> 能量扫描法 初态辐射法 ,子形状因子 结与展望

 e^{+} γ^{μ} $q^{2} > 0$ N e^{-} N e^{+} γ^{μ} $q^{2} > 0$ γ^{μ} $q^{2} > 0$ N N

■ TL过程包括能量扫描法和初态辐射 (ISR), BESIII 都可以实现:

	能量扫描法	ISR 方法
E _{beam}	分立	固定
\mathcal{L}	每一个能量点的亮度不高	在一个能量点亮度很高
σ	$\frac{d\sigma_{p\bar{p}}}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} [G_M ^2 (1 + \cos^2\theta)]$	$rac{d\sigma_{par{p}\gamma}}{dq^2d heta_{\gamma}}=rac{1}{s}W(s,x, heta_{\gamma})\sigma_{par{p}}(q^2)$
	$+\frac{\frac{-4m_p^2}{q^2} G_E ^2\sin^2\theta]$	$W(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$
q^2	单一于每个能量点	从阈值到 s
	M. Ablikim et al. (BESIII collaboration), PRL 124, 042001 (2020)	M. Ablikim et al. (BESIII collaboration), PRD 99, 092002 (2019)
文章	M. Ablikim et al. (BESIII collaboration), PRD 91, 112004 (2015)	M. Ablikim et al. (BESIII collaboration), PLB 817, 136328 (2021)
	M. Ablikim et al. (BESIII collaboration), arXiv:2103.12486	

ISR 抑制因子: $\frac{\alpha}{\pi} \sim \frac{1}{400}$ 。

核子形状因子

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

核子的内部结构 质子形状因子 加速器与探测器 BEPCII

最新结果 质子形状因子 能量扫描法 初态辐射法 中子形状因子 ■ 在 e⁻p 散射和 e⁺e⁻ → pp̄ 湮没实验研究了<mark>许多现象</mark>:(JLAB, MAMI, FENICE, CMD3, PS170, BESIII, *BABAR*)

- 类空过程的偶极定律;
- 类空过程的标度无关性;
- 类时过程,在阈值附近,有效 形状因子 | Geff | 陡峭地上升;
- 类时过程形状因子的振荡...

- 实验对核子在 q² 在很大的范围进行描绘。
- 目前核子 FF测量遗留的的问题:
 - 精度差 (11%, 43%) 且能量覆盖有限。
 - BABAR (J. P. Lee et al. (BABAR Collaboration), PRD 87, 092005 (2013)) 和 PS170 (G. Bardin et al. (PS170 Collaboration), Nucl. Phys. B411 3 (1994)) 测量的电磁形状因子之比 |GE/GM|不符合。是TL研究的长期的困扰。
 - 以前测量的结果多是 $|G_{\text{eff}}|$ (假设 $|G_{\text{E}}| = |G_{\text{M}}|$),对 $|G_{\text{E}}|$ 和 $|G_{\text{M}}|$ 少有效区分。我们首次对 $|G_{\text{E}}|$ 和 $|G_{\text{M}}|$ 两个形状因子进行了独立测量。

加速器与探测器

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏

研究背景 核子的内部结构 质子形体因子

加速器与探测 器

BEPCII BESIII

最新结果 质子形状因子 能量扫描法 初杰辐射法

初恋辐射法 中子形状因子 1 研究背景

- ■核子的内部结构
- ■质子形状因子

2 加速器与探测器

- 北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- ■质子形状因子
 - 能量扫描法
 - ■初态辐射法
- ■中子形状因子

4 总结与展望

北京正负电子对撞机 II (BEPCII)

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测

BEPCII

最新结果 质子形状因 能量扫描》 初态辐射》

初态辐射法 中子形状因子 6 公 与 属 切

1 第一对撞点实验厅 2 第一对撞点实验厅 3 储存环电源实验厅、中央控制室 4 高频站 5 第二对撞点实验厅 6 储存环隧道 7 输运线隧道 8 直线加速器隧道 9 速调管长廊 10 核物理实验大厅 11 输运线电源厅 12 同步辐射实验东厅 13 同步辐射实验西厅

- E_{beam} : 1.00 \sim 2.48 GeV;
- 双储存环: e⁺ 和 e⁻;
- 東团数: 93;
- 最高亮度: 1.0 × 10³³ cm⁻²s⁻¹ @3770 MeV。

14 计算机中心

北京谱仪 (BESIII)

北京谱仪 BESIII 上版 ESIII 上版 ESIII 上版 ESIII 上版 ESIII 上版 ESIII 上版 EBESIII

- 主漂移室 (MDC): (He/C₃H₈=40/60)
 - σ_{xy} =130 μ m, $dE/dx \sim 6\%$;
 - σ_p/p=0.5% 在 1 GeV。
- 飞行时间探测器 (TOF): (桶部: 塑料闪烁体, 端盖: MRPC)
 - σ_{time}(桶部)=80 ps;

- σ_{time}(端盖)=110 ps;
- 端盖更新为 MRPC 后,
 σ_{time}(端盖)=65 ps。
- 电磁量能器 (EMC): (碘化铯 Csl (铊 Tl))
 - σ_E/E(桶部)=2.5%
 在 1 GeV;
 - σ_E/E(端盖)=5%
 在 1 GeV。
- 超导磁体: B = 1 T。
- *µ* 子探测器 (RPC):
 - 桶部: 9 层;
 - 端盖: 8 层;
 - σ_{spatial} =2 cm.

最新结果

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景

(子的内部结构 (子形状因子

加速器与探器

BEPCII

BESIII

最新结果

质子形状因子 能量扫描法 初态辐射法

中子形状因子

1 研究背景

- ■核子的内部结构
- ■质子形状因子

2 加速器与探测器

- 北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- 质子形状因子
 - 能量扫描法
 - 初态辐射法
- 中子形状因子
- 4 总结与展望

质子形状因子:能量扫描法

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测 器 BEPCII BESIII

能量扫描法 初态辐射法 中子形状因-

26 AL F 18 40

M. Ablikim et al. (BESIII collaboration), PRL 124, 042001 (2020).

- 能量扫描法利用 688 pb⁻¹, 2.00~3.08 GeV 的 22 个能量点的数据,对每一个质心能量点的 $\sigma_{p\bar{p}}$ 和 G_{eff} 进行了迄今最精确测量。
- 2.00~3.08 GeV 是非微扰理论和微扰理论的过渡区,没有一个唯 象理论可以解释这一能量段的σ_{pp}。本实验是在本能量段最精确 的结果,是对质子性质的最直观的认识,是最重要的理论输入。
 - 引入库伦修正因子以描述末态 pp̄ 的库伦相互作用,通过在库伦修 正因子中引入强相互作用耦合,可以解释σρρ 的性质。
 - 靠近阈值根据 | Geff | 渐近行为的非微扰理论,提出的截面引入了对于强相互作用的胶子交换的考虑,成功地解释了σωρ的性质。

质子形状因子:能量扫描法

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子

BEPCII BESIII

质子形状因子 **能量扫描法** 初态辐射法 中子形状因子

結与展望

■ Rinaldo 模型, Bianconi 模型 (A. Bianconi *et al.*, PRL **114**, 232301 (2015))

拟合截面:
$$\sigma_{p\bar{p}}(s) = \begin{cases} \frac{e^{a_0} \pi^2 \alpha^3}{s \left[1 - e^{-\frac{\pi \alpha_s(s)}{\beta(s)}}\right] \left[1 + \left(\frac{\sqrt{s} - 2m_p}{a_1}\right)^{a_2}\right]}, \sqrt{s} \le 2.3094 \text{ GeV}, \\ \\ \frac{2\pi \alpha^2 \beta(s) C \left[2 + \left(\frac{2m_p}{\sqrt{s}}\right)^2\right] e^{2a_3}}{3s^5 \left[4 \ln^2 \left(\frac{\sqrt{s}}{a_4}\right) + \pi^2\right]^2}, \sqrt{s} > 2.3094 \text{ GeV}. \end{cases}$$

- Rinaldo 模型考虑了接近阈值的强相 互作用;
 - ✓ a₀、a₃: 归一化因子;
 - ✓ a₁: 阈值附近的 QCD 尺度因子 Λ_{QCD,thr};
 - √ a2:与价夸克数目相关的衰减指数。
- Bianconi 模型是大 q² 转移的pQCD 模型。
 - ✓ a₄: 远离阈值的 QCD 尺度因子 Λ_{QCD,con}。

质子形状因子:能量扫描法

北京谱仪 BESIII 上核 子类时形状医 子的最新结果

报告人: 夏磊

核子的内部结构 质子形状因子 加速器与探测 器

BESIII 最新结果 质子形状医

能量扫描法 初态辐射法 中子形状因子

总结与展望

M. Ablikim *et al.* (BESIII collaboration), PRL **124**, 042001 (2020), M. Ablikim *et al.* (BESIII collaboration), PRD **91**, 112004 (2015).

- |G_E|和|G_M|首次可以分离测量。
- |GE| 是历史上首次测量。
- 相比于 PS170 (G. Bardin et al. (PS170 Collaboration), Nucl. Phys. B411 3 (1994)), 我们给出的结果与 BABAR 实验组的结果 (J. P. Lee et al. (BABAR Collaboration), PRD 87, 092005 (2013)) 更为接近。解决了TL研究的长期 困扰。

质子形状因子:初态辐射法

北京谱仪 BESIII 上核 子类时形状因 子的最新结果 报告人: 夏磊

质子形状因子 加速器与探测 BEPCII BESIII 最新结果 质子形状因子 能量扫描法 加热辐射法 M. Ablikim *et al.* (BESIII collaboration), PRD **99**, 092002 (2019), M. Ablikim *et al.* (BESIII collaboration), PLB **817**, 136328 (2021).

- 利用 7.5 fb⁻¹ 的数据,使用ISR 方法,包括标记光子法和未标记 光子法,进行质子电磁形状因子(EMFF)测量。
- 相比于能量扫描法, ISR 方法在较大的 q² 范围进行EMFF测量。
- 结果和能量扫描法相符合。
- 从阈值到 q² = 4.0 GeV², 平均截面在 840 pb 左右。
- 阈值附近点状粒子假设下截面: $\sigma_{point} = \frac{4\pi\alpha^2}{3s}[1 + \frac{2m^2}{s}] = 845 \text{ pb}$.

质子形状因子:初态辐射法

北京谱仪 BESIII 上核 子类时形状因 子的最新结果 报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测 双

最新结果 质子形状因子 能量扫描法 初态辐射法 中子形状因子

- |G_E/G_M| 测量精度:
 - BABAR: 10.8%~15.4%;
 BESIII: 18.1%~27.2%。
- |G_E/G_M| 从 p̄p 阈值到 3 GeV/c² 提
- 取。取。与能量扫描法测量的结果互相佐证。
- 需要更多的数据提高精度。

$M_{ hoar ho}^{ m inv}$ [GeV/ c^2]	$N_{ m obs}$	$\frac{\Delta N_{\rm obs}}{N_{\rm obs}}$	$\frac{\Delta G_E/G_M }{ G_E/G_M }$	比较	实验
$2.025 \sim 2.100$	1328	2.74%	10.79%	3.9	BABAR LA-ISR
$2.025 \sim 2.100$	560	4.23%	18.49%	4.4	BESIII LA-ISR
$2.0 \sim 2.3$	4283	1.53%	$\sim 23.39\%$		BESIII SA-ISR
2.125	50312	0.45%	3.39%	7.6	BESIII Scan
$1.92 \sim 2.00$	2577	1.97%	15.44%	7.8	CMD-3 (combined)

质子形状因子:振荡行为

北京議仪 BESIII 上核 **子举时形状因 子的最新结果** 报告人: 夏磊

初為輻射法

0.06 BESIII (LA-ISR) BESIII 2020 BESIII (LA-ISR) BESIII 2020 BESIII (SA-ISR) BESIII (SA-ISR) ▲ BABAR 0.35 0.04 BESIII 2015 BABAR 0.3 0.02 0.2 0.15 -0.02 CLEO 0.1 -0.04 0.05 -0.06 a2[(GeV/c)2] p [GeV/c]

- |Geff| 中的周期性行为由 BABAR 实验观察到 (A. Bianconi et al., PRL 114, 232301 (2015)), 由 BESIII 实验确定。
- 拟合有效形状因子 (E. Tomasi-Gustafsson et al., PLB **504**, 291 (2001)):

$$|G_{\text{eff}}(s)| = rac{\mathcal{A}}{(1 + rac{s}{m_s^2})[1 - rac{s}{0.71 \; (\text{GeV}/c)^2}]^2},$$

- 振荡模型拟合有效形状因子的残差 (A. Bianconi et al., PRC 93, 035201 (2016)):
 - $F(p) = b_0^{\text{osc}} e^{-b_1^{\text{osc}} p} \cos(b_2^{\text{osc}} p + b_3^{\text{osc}}).$
- 对于振荡效应的解释:
 - 末态再散射的干涉效应; 可能的共振态。

中子形状因子

北京谱仪 BESIII 上核 子类时形状因 子的最新结果 报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测

质子形状因子 能量扫描法 初态辐射法 中子形状因子 总结与展望 M. Ablikim et al. (BESIII collaboration), arXiv:2103.12486

- 能量扫描法,利用 647.9 pb⁻¹,
 2.00~3.08 GeV 的 18 个能量点的数据,对每一个质心能量点量的σ_{ni}和|Geff|进行了迄今最精确测量。每
- 验证了"光子-中子"的耦合强于于"光 $\frac{1}{C^{B}}$ 子-质子"耦合的"谜题"(V. L Chernyak et al., Phys. Rept. 112, 173 (1984)): $\sigma_{BB}^{Born} \propto |\sum_{q \in B} Q_{q} a_{q}^{B}(s)|, \frac{\sigma_{Den}^{Born}}{\sigma_{Ben}^{Born}} \rightarrow \frac{Q_{u}^{2}}{Q^{2}} = 4$ 。

中子形状因子

北京谱仪 BESIII 上核 子类时形状因 子的最新结果 报告人: 夏磊

> 开究背景 核子形状因子 肉子形状因子 知题 BEPCII BESIII 曼新结果

0.35 BESIII: (this work) 0.3 Fit with Gnod $\mathcal{A}_n = 3.5 + 0.1$ 0.25 $m_s^2 = 47839146.0 + 1.4 \text{ GeV}^2$ $\gamma^2/ndf = 64.7/16$ 0.2 ---- Fit with G $\mathcal{A}_n = 3.5 + 0.1$ 0.15 $y^2/ndf = 64.9/16$ 0.1 0.05 0 1.8 2.8 2.2 vs (GeV)

- 中子的 | Geff| 也发现了类似的振荡效应。
- 同时拟合质子和中子的 $|G_{eff}|$, 得到共同的周期: $b_2^{osc, shared} = (5.55 \pm 0.28) \text{ GeV}^{-1}$ 。
- 接近于正交, 最大相位角为: $\Delta b^{\text{osc}} = |b_{2p}^{\text{osc}} b_{2n}^{\text{osc}}| = (125 \pm 12)^{\circ}$ 。

总结与展望

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子

加速器与探测器

BEPCII BESIII

最新结果 质子形状因子 能量扫描法 初态辐射法 中子形状因子

总结与展望

1 研究背景

- ■核子的内部结构
- ■质子形状因子

2 加速器与探测器

- 北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- ■质子形状因子
 - 能量扫描法
 - 初态辐射法
- ■中子形状因子

4 总结与展望

本结果的影响:截面谱形

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏

研究背景 核子的内部结构 质子形状因子 加速器与探测 器 BEPCII

原于形状因子 能量扫描法 初态辐射法 中子形状因子 **总结与展型**

- BESIII 对质子(能量扫描+ISR)中子(能量扫描)的σ^{Born},和|Geff|进行了迄今最精确测量。
- 2.00~3.08 GeV 是非微扰理论和微扰理论的过渡区,没有一个唯象理论可以解释这一能量段的截面。本实验是在本能量段最精确的结果,是对核子性质的最直观的认识,是最重要的理论输入。
 - 引入库伦修正因子以描述末态 $p\bar{p}$ 的库伦相互作用,通过在库伦修正因子中引入强相互作用耦合,可以解释 $\sigma_{p\bar{p}}$ 的性质。
 - 靠近國值根据 Gerf 渐近行为的非微扰理论,提出的截面引入了对于强相互作用的胶子交换的考虑,成功地解释了σρρ的性质。
 - 2.4 GeV附近的 σ_{pp} 的振荡行为是否预示着一个新的结构? 其他的 振荡是否也是由未知共振态造成的?

本结果的影响:截面谱形

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测器 BEPCII

原子形状因子 能量扫描法 初态辐射法 中子形状因子 **总结与展望**

- BESIII 对质子(能量扫描+ISR)中子(能量扫描)的 σ_{NN}^{Born} ,和 $|G_{eff}|$ 进行了迄今最精确测量。
- 2.00~3.08 GeV 是非微扰理论和微扰理论的过渡区,没有一个唯象理论可以解释这一能量段的截面。本实验是在本能量段最精确的结果,是对核子性质的最直观的认识,是最重要的理论输入。
 - 引入库伦修正因子以描述末态 $p\bar{p}$ 的库伦相互作用,通过在库伦修正因子中引入强相互作用耦合,可以解释 $\sigma_{p\bar{p}}$ 的性质。
 - 靠近國值根据 Gerf 渐近行为的非微扰理论,提出的截面引入了对于强相互作用的胶子交换的考虑,成功地解释了σρρ的性质。
 - 2.4 GeV附近的 σ_{pp} 的振荡行为是否预示着一个新的结构? 其他的 振荡是否也是由未知共振态造成的?

本结果的影响:振荡

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究有京 核子的内部结 质子形状因子 加速器与探 器

BESIII

质于形状四 能量扫描; 初态辐射; 中子形状因

总结与展望

- (5.55±0.28) GeV⁻¹。 ■ 接近千正京 暑土相位角为・入 h^{osc} — | h^{osc} — h^{osc}| — (125+12)°
- 接近于正交,最大相位角为: $\Delta b^{\text{osc}} = |b_{2p}^{\text{osc}} b_{2n}^{\text{osc}}| = (125 \pm 12)^{\circ}$ 。

■ 通过本实验结果,理论学家修正了利用振荡行为描述 $|G_{eff}|$ 的唯象理论,并将振荡扩展到 $|G_E/G_M|$, $|G_E|$ 和 $|G_M|$,进行了周期性行为研究(E. Tomasi-Gustafsson et al., arXiv:2012.1465)。

本结果的影响: 电磁形状因子

北京谱仪 **子举时形状因 子的最新结果**

报告人: 夏磊

总结与展望

- G_E 和 G_M 首次可以分离测量。
- TL测量的结果的精度首次可以和SL相媲美。
- 相比于 PS170 (G. Bardin et al. (PS170 Collaboration), Nucl. Phys. B411 3 (1994)) 我们的结果与 BABAR (J. P. Lee et al. (BABAR Collaboration), PRD 87, 092005 (2013)) 更为接近。解决了TL研究的长期困扰。
- 利用质子 G_F 和 G_M 的结果:

- 联合TL和SL的结果给出质子 荷电半径的新约束 (M. Yu. Barabanov et al., Prog. Part. Nucl. Phys. **116** 103835 (2021));
 - 验证不同理论模型: 手征 微扰理论, 微扰理论和格 点 QCD (A. Z. Dubničková et al.,

3-IGEI/IGM

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人: 夏磊

研究背景 核子的内部结构 质子形状因子 加速器与探测 器 BEPCII

质子形状因子 能量扫描法 初态辐射法 中子形状因子

中子形状因子 总结与展望

Thanks for your attention!

