

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景 核子的内部结 质子形状因子

加速器与 器 BEPCII BESIII

最新结果 质子形状因 能量扫描3 初态辐射3

中子形状因子

总结与展望

北京谱仪 BESIII 上核子类时形状因子的最新 结果

报告人: 夏磊

xial@mail.ustc.edu.cn (代表 BESIII 合作组)

中国科学技术大学 核探测与核电子学国家重点实验室

中国物理学会高能物理分会第十二届全国粒子物理学术会议 2021 年 8 月 16 日 山东大学 青岛

2021 年 8 月 18 日

目录

报告人:夏磊

			3	最新结果
1	研究背景			
			4	总结与展望

2 加速器与探测器

・ロト ・四ト ・ヨト ・ヨト

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

Ξ.

研究背景

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景

核子的内部结? 质子形状因子

加速器与参 器 BEPCII

BESIII

取新结果 质子形状因 能量扫描: 初志辐射:

总结与展望

1 研究背景

■ 核子的内部结构

■ 质子形状因子

2 加速器与探测器

- ■北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- 质子形状因子
 - 能量扫描法
 - 初态辐射法
- 中子形状因子

4 总结与展望

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

3

・ロト ・四ト ・ヨト ・ヨト

核子的内部结构

- 北京谱仪 BESIII 上核 子类时形状因 子的最新结果
- 报告人:夏磊
- 研究背景 核子的内部结构 质子形状因子
- 加速器与探 器 BEPCII BESIII
- 最新结果 质子形状因子 能量扫描法 初态辐射法 中子形状因子
- 总结与展望

■ 为了理解质子内部结构,可以将一个点粒子投射到质子上,比如e⁻p 散射实验;或者采用e⁺e⁻ ⇔ pp 湮没实验。

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

核子的内部结构

- 北京谱仪 BESIII 上核 子举时形状因 子的最新结果
- 报告人: 夏磊
- 核子的内部结构

为了理解质子内部结构,可以将一个点粒子投射到质子上,比 $ue^{-}p$ 散射实验; 或者采用 $e^{+}e^{-} \Leftrightarrow p\bar{p}$ 湮没实验。

BESIII 上核

报告人:夏磊

2021 年

核子形状因子

■ 核子形状因子 (FFs) 是核子的最基本的可观测量之一, 且利	口其内
部结构和动力学密切相关。有助于描述电荷和电流的空间分	う布。
■ 核子 FF由类空过程(SL)和类时过程(TL)测量得到。	
 质子的电磁顶点 Γ_μ 描述强子流: 	
e e $\gamma^{*}(q)$ Form Factors Dirac: $F_1(q^2)$ Pauli: $F_2(q^2)$ $G_E = F_1 + \frac{g^2}{4M^2}F_2$ $G_M = F_1 + \kappa F_2$ $e^ \gamma^{*}(q)$ e^-	>
p p p Time-Like Region FFs Complex	*
Space-Like Region FFs Real Unphysical Physical	
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	8
$\checkmark \Gamma_{\mu}(\mathbf{p}',\mathbf{p}) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_2(q^2), \checkmark q^2 = 0 \mathbb{H}:$	
✓ $G_F(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2),$ 质子:	
$\checkmark \ \ G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2), \qquad \qquad F_1 = F_2 = 1, \ \ G_E = 1, \ \ G_M = \mu$	<i>ι</i> _p ,
$\sqrt{\tau} = \frac{q^2}{4m_a^2}, \ \kappa_p = \frac{g_p - 2}{2} = \mu_p - 1.$ $\psi(\tau):$ $F_1 = 0, \ F_2 = 1, \ G_F = 0, \ G_M$	$= \mu_n$.
• Sachs FF: $G_E \neq G_M$, (F. J. Ernst <i>et al.</i> , PR 119, 1105 (1960), R. G	. Sachs,
PR 126, 2256 (1962)), 可以理解为核子电荷和磁化强度的空	门分
布在Breit frame的傅立叶变换: $ ho(\vec{r}) = \iiint \frac{d^3q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{E(\vec{q})} G_E(\vec{r})$	\vec{q}^2).
8月18日 中国物理学会高能物理分会第十二届全国新子物理学术会议	4/20

能量扫描法和初态辐射法

报告人:夏磊

■ TL过程包括能量扫描法和初态辐射 (ISR), BESⅢ 都可以实现:

	能量扫描法	ISR 方法		
Ebeam	分立	固定		
L	每一个能量点的亮度不高	在一个能量点亮度很高		
σ	$\frac{d\sigma_{p\bar{p}}}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} [G_{\mathcal{M}} ^2 (1+\cos^2\theta)$	$rac{d\sigma_{ m par p\gamma}}{dq^2d heta_\gamma}=rac{1}{s}W\!(s,x, heta_\gamma)\sigma_{ m par p}(q^2)$		
	$+rac{4m_{ ho}^2}{q^2} \mathcal{G}_{\mathcal{E}} ^2\sin^2 heta]$	$W(s, x, heta_{\gamma}) = rac{lpha}{\pi x} (rac{2-2x+x^2}{\sin^2 heta_{\gamma}} - rac{x^2}{2})$		
q^2	单一于每个能量点	从阈值到 s		
	M. Ablikim et al. (BESIII collaboration), PRL 124, 042001 (2020)	M. Ablikim et al. (BESIII collaboration), PRD 99, 092002 (2019)		
文章	M. Ablikim et al. (BESIII collaboration), PRD 91, 112004 (2015)	M. Ablikim et al. (BESIII collaboration), PLB 817, 136328 (2021)		
	M. Ablikim et al. (BESIII collaboration), arXiv:2103.12486			

ISR 抑制因子:
$$\frac{\alpha}{\pi} \sim \frac{1}{400}$$
。

▲ 同 ▶ → 目 ▶

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

核子形状因子

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景 核子的内部结 质子形状因子

加速器与採 器 BEPCII BESIII 最新结果 质子形状因音

能量扫描法 初态辐射法 中子形状因子

总结与展望

 ▲ e⁻p 散射和 e⁺e⁻ → pp 湮没实验研究了许多现象: (JLAB, MAMI, FENICE, CMD3, PS170, BESIII, BABAR)

- 类空过程的偶极定律;
- 类空过程的标度无关性;
- 类时过程,在阈值附近,有效 形状因子 | Geff | 陡峭地上升;

- 目前核子 FF测量遗留的的问题:
 - 精度差 (11%, 43%) 且能量覆盖有限。
 - BABAR (J. P. Lee et al. (BABAR Collaboration), PRD 87, 092005 (2013)) 和 PS170 (G. Bardin et al. (PS170 Collaboration), Nucl. Phys. B411 3 (1994)) 测 量的电磁形状因子之比 |G_E/G_M|不符合。是TL研究的长期的困扰。
 - 以前测量的结果多是|G_{eff}| (假设|G_E| = |G_M|),对|G_E|和|G_M|少有 效区分。我们首次对|G_E|和|G_M|两个形状因子进行了独立测量。

2021 年 8 月 18 日

加速器与探测器

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景 核子的内部结核 质子形状因子

加速器与探测 器

BEPCII BESIII

最新结果 质子形状因 能量扫描;

初志辐射法 中子形状因-1

总结与展望

1 研究背景

■ 核子的内部结构

■ 质子形状因子

2 加速器与探测器

■ 北京正负电子对撞机 (BEPCII)

■ 北京谱仪 (BESIII)

3 最新结果

- 质子形状因子
 - 能量扫描法
 - 初态辐射法
- 中子形状因子

4 总结与展望

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

北京正负电子对撞机 II (BEPCII)

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景 核子的内部结 质子形状因子

加速器与探器

BEPCII

BESIII

取研結果 质子形状因 能量扫描法 初态辐射法 中子形状因

总结与展望

- E_{beam} : 1.00~2.48 GeV;
- 双储存环: e⁺ 和 e⁻;
- 束团数:93;
- 最高亮度: 1.0×10³³ cm⁻²s⁻¹ @3770 MeV。

イロト イヨト イヨト

北京谱仪 (BESIII)

报告人:夏磊

研究背景 核子的内部站 质子形状因子 加速器与探;

BEPCII BESIII

最新结果 质子形状因子 能量扫描法 初态辐射法 中子形状因子

- 主漂移室(MDC): (He/C₃H₈=40/60)
 - σ_{xy}=130 μm, dE/dx~6%;
 - $\sigma_p/p=0.5\%$ 在 1 GeV。
- 飞行时间探测器 (TOF): (桶部: 塑料闪烁体,端盖: MRPC)
 - $\sigma_{time}(桶部)=80 \ ps;$

- $\sigma_{time}(_{rac{3}{2}} \equiv 110 \text{ ps};$
- 端盖更新为 MRPC 后, σ_{time} (端盖)=65 ps。
- 电磁量能器 (EMC): (碘化铯 Csl (铊 TI))
 - σ_E/E(桶部)=2.5%
 在 1 GeV;
 - σ_E/E(端盖)=5%
 在 1 GeV。
- 超导磁体: B = 1 T。
- µ 子探测器 (RPC):
 - 桶部: 9 层;
 - 端盖: 8 层;
 - $\sigma_{\text{spatial}}=2$ cm.

イロト イボト イヨト イヨト

最新结果

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景 核子的内部结核 质子形状因子

加速器与将 器 BEPCII BESIII

最新结果 质子形状因于 能量扫描法 初态辐射法 中子形状因子 1 研究背景

- 核子的内部结构
- 质子形状因子

2 加速器与探测器

- ■北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- 质子形状因子
 - 能量扫描法
 - 初态辐射法
- 中子形状因子

4 总结与展望

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

3

北京谱仪 BESIII 上核 子半时形状因

子的最新结果

报告人: 夏磊

质子形状因子:能量扫描法

M. Ablikim et al. (BESIII collaboration), PRL 124, 042001 (2020).

- 能量扫描法利用 688 pb⁻¹, 2.00~3.08 GeV 的 22 个能量点的数据, 对每一个质心能量点的σ_{pp}和 Geff 进行了迄今最精确测量。
 - 2.00~3.08 GeV 是非微扰理论和微扰理论的过渡区,没有一个唯 象理论可以解释这一能量段的oppo。本实验是在本能量段最精确的结果,是对质子性质的最直观的认识,是最重要的理论输入。
 - 引入库伦修正因子以描述末态 pp 的库伦相互作用,通过在库伦修 正因子中引入强相互作用耦合,可以解释 σpp 的性质。
 - 靠近阈值根据 | Geff | 渐近行为的非微扰理论,提出的截面引入了对 于强相互作用的胶子交换的考虑,成功地解释了σpp 的性质。

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

质子形状因子:能量扫描法

- :ti	京诸	仪
BES	111	上核
子坐	时形	法因
2.66	新 - 新	- 44 IR
-1 ea.	凤山	25 不

报告人: 夏磊

2021 年8月18日

- Rinaldo 模型考虑了接近阈值的强相 互作用:
 - ✓ an、a3: 归一化因子;
 - ✓ a1: 阈值附近的 QCD 尺度因子 $\Lambda_{\text{QCD,thr}};$
 - ✓ a2: 与价夸克数目相关的衰减指数。
- Bianconi 模型是大 q² 转移的pQCD 模型。
 - ✓ a4: 远离阈值的 QCD 尺度因子 Λ_{QCD.con} ∘ ・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

中国物理学会高能物理分会第十二届全国粒子物理学术会议

3

质子形状因子:能量扫描法

报告人:夏磊

- 质子 |G_E/G_M|最佳精度在 3.5%,给出了精度可以和SL相媲美的 结果。
- |G_E|和|G_M|首次可以分离测量。
- |G_E|是历史上首次测量。
- 相比于 PS170(G. Bardin *et al.* (PS170 Collaboration), Nucl. Phys. B411 3 (1994)), 我们给出的结果与 BABAR 实验组的结果 (J. P. Lee *et al.* (BABAR Collaboration), PRD 87, 092005 (2013))更为接近。解决了TL研究的长期 困扰。

质子形状因子: 初态辐射法

- 利用 7.5 fb⁻¹ 的数据,使用ISR 方法,包括标记光子法和未标记 光子法,进行质子电磁形状因子(EMFF)测量。
 - 相比于能量扫描法, ISR 方法在较大的 q² 范围进行EMFF测量。
- 结果和能量扫描法相符合。
- 从阈值到 q² = 4.0 GeV², 平均截面在 840 pb 左右。
- 阈值附近点状粒子假设下截面: $\sigma_{\text{point}} = \frac{4\pi\alpha^2}{35} [1 + \frac{2m^2}{5}] = 845 \text{ pb}_{\circ}$

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

质子形状因子: 初态辐射法

北京谱仪 北京谱仪 1855111 上标 1954日 1955日 1954日 1955 1955	2.5 BEA BAC D D D D D D D D D D D D D	SIII (LA-ISR) BAR 0 ID-3 6 7 2 [(GeV/c ²]	BESIII 2015 BESIII (SA-ISR) BESIII 2020	■ G _E /G _M ● BAE ● BES ■ G _E /G _M 取。 ■ 与能量却 ■ 需要更多	测量精 3AR:10 III:18.1 从 <i>pp</i> 日描法测 3的数据	·度:).8%~15.4%; 1%~27.2%。 阈值到 3 GeV/c ² 提 一量的结果互相佐证。 ·提高精度。
初态辐射法 中子形状因子 - 结 片 區 切	$M_{p\bar{p}}^{\text{inv}} [\text{GeV}/c^2]$	N _{obs}	$\frac{\Delta N_{\rm obs}}{N_{\rm obs}}$	$\frac{\Delta G_E/G_M }{ G_E/G_M }$	比较	实验
	$2.025 \sim 2.100$	1328	2.74%	10.79%	3.9	BABAR LA-ISR
	$2.025\sim2.100$	560	4.23%	18.49%	4.4	BESIII LA-ISR
	$2.0\sim2.3$	4283	1.53%	$\sim 23.39\%$		BESIII SA-ISR
	2.125	50312	0.45%	3.39%	7.6	BESIII Scan
	$1.92 \sim 2.00$	2577	1.97%	15.44%	7.8	CMD-3 (combined)

初為輻射法

质子形状因子:振荡行为

2021 年8月18日

中子形状因子

中子形状因子

总结与展望

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

报告人:夏磊

研究背景 核子的内部结: 质子形状因子

加速器与打器 器 BEPCII

最新结果 质子形状B 能量扫描

初志辐射法 中子形状因:

总结与展望

1 研究背景

- 核子的内部结构
- 质子形状因子

2 加速器与探测器

- 北京正负电子对撞机 (BEPCII)
- 北京谱仪 (BESIII)

3 最新结果

- 质子形状因子
 - 能量扫描法
 - 初态辐射法
- 中子形状因子

4 总结与展望

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

æ -

・ロト ・四ト ・ヨト ・ヨト

总结与展望

本结果的影响:截面谱形

- BESIII 对质子(能量扫描+ISR)中子(能量扫描)的σ^{Born}_{NN}, 和|G_{eff}|进行了迄今最精确测量。
- 2.00~3.08 GeV 是非微扰理论和微扰理论的过渡区,没有一个唯象理论可以解释这一能量段的截面。本实验是在本能量段最精确的结果,是对核子性质的最直观的认识,是最重要的理论输入。
 - 引入库伦修正因子以描述末态 pp 的库伦相互作用,通过在库伦修 正因子中引入强相互作用耦合,可以解释σ_{pp}的性质。
 - 靠近阈值根据 Geff 渐近行为的非微扰理论,提出的截面引入了对 于强相互作用的胶子交换的考虑,成功地解释了σpp的性质。
 - 2.4 GeV 附近的 σ_{pp} 的振荡行为是否预示着一个新的结构? 其他的振荡是否也是由未知共振态造成的?

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

总结与展望

本结果的影响:截面谱形

- BESIII 对质子(能量扫描+ISR)中子(能量扫描)的σ^{Born}_{NN}, 和|Geff|进行了迄今最精确测量。
- 2.00~3.08 GeV 是非微扰理论和微扰理论的过渡区,没有一个唯象理论可以解释这一能量段的截面。本实验是在本能量段最精确的结果,是对核子性质的最直观的认识,是最重要的理论输入。
 - 引入库伦修正因子以描述末态 pp 的库伦相互作用,通过在库伦修 正因子中引入强相互作用耦合,可以解释σ_{pp}的性质。
 - 靠近阈值根据 Geff 渐近行为的非微扰理论,提出的截面引入了对 于强相互作用的胶子交换的考虑,成功地解释了σpp的性质。
 - 2.4 GeV 附近的 σ_{pp} 的振荡行为是否预示着一个新的结构? 其他的振荡是否也是由未知共振态造成的?

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

本结果的影响:振荡

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

本结果的影响: 电磁形状因子

联合TL和SL的结果给出质子 荷电半径的新约束(M. Yu. Barabanov *et al.*, Prog. Part. Nucl. Phys. **116** 103835 (2021));

验证不同理论模型: 手征 微扰理论, 微扰理论和格 点 QCD (A. Z. Dubničková *et al.*, arXiv:2011.10271)。 = 、 = 、 つの

R=|GE|/GM|

总结

北京谱仪 BESIII 上核 子类时形状因 子的最新结果

- 报告人:夏磊
- 研究背景 核子的内部结 质子形状因子
- 加退高与禄 器 BEPCII BESIII 最新结果
- 取 町 55 木 质子形状因子 能量扫描法 初态辐射法 中子形状因子
- 总结与展望

Thanks for your attention!

2021 年 8 月 18 日

中国物理学会高能物理分会第十二届全国粒子物理学术会议

20/20

э