

Light meson spectroscopy at BESIII

Ning Cao

Institute of High Energy of Physics **On behalf of BESIII Collaboration**

16 August, 2021

Outline

- Glueball
- Structure near pp
 threshold
- Strange quarkonium(*s*s̄)
- 2 Summary

- Light meson spectroscopy
 - Key tool to study/develop QCD in non-perturbative region
- Conventional quark model: Meson(qq̄), Baryon(qqq)
- Exotic hadronic state predicted by QCD
 - Glueball($gg, ggg \cdots$)
 - Hybrid state(qqg, qqqg)
 - Multi-quark state($N_{q(\bar{q})} \ge 4$)
- Searching for those states helps study gluon field and understand color confinement
- Lattice QCD(LQCD) predicted the glueball spectrum and their quantum numbers
- Glueball with ordinary quantum number can be mixed with nearby qq
 states
 - Systematical study needed in the identification

Phys.Rev.D 73 (2006) 014516

BESIII's advantages

- Gluon-rich process
- Clean, high-statistics data samples directly from e^+e^- collisions
- I, J^{PC} filter

Amplitude analysis of $J/\psi \rightarrow \gamma K_S K_S$

LQCD prediction of scalar glueball

- Mass: 1.5~1.7 GeV [Phys.Rev.D 87 (2013) 9, 092009]
- Production in radiative J/ψ decay: $\mathcal{B}(J/\psi \to \gamma G_{0^+}) = 3.8(9) \times 10^{-3}$ [Phys.Rev.Lett. 110 (2013) 2, 021601]

- Dominant amplitudes include the $f_0(1710), f_0(2200), f'_2(1525)$
- $f_0(1710) \sim 10$ times larger production than $f_0(1500)$ in $J/\psi \rightarrow \gamma \eta \eta$ [Phys.Rev.D 87 (2013) 9, 092009] and $J/\psi \rightarrow \gamma K_S K_S$
 - Measured mass \sim 1.7 GeV
 - Production of $f_0(1710)$ in radiative J/ψ decay (> 1.7×10^{-3}) close to theoretical prediction of scalar glueball

Pseudo-scalar glueball candidate

LQCD prediction of Pseudo-scalar glueball

- Mass: 2.3~2.6 GeV [Phys.Rev.D 73 (2006) 014516]
- Production in radiative J/ ψ decay: $\mathcal{B}(J/\psi \to \gamma G_{0^{-+}}) = 2.31(80) \times 10^{-4}$ [Phys.Rev.D 100 (2019) 5, 054511]
- X(2370) firstly observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$
 - Measured mass: $2376.3 \pm 8.7(\text{stat.})^{+3.2}_{-4.3}(\text{sys.}) \text{ MeV}$
 - Consistent with LQCD prediction to pseudo-scalar glueball

Chiral effective Lagrangian calculation[Phys.Rev.D 87 (2013) 5, 054036]

• For pseudo-scalar glueball mass of 2.37 GeV, $\mathcal{B}(G \to \eta \eta \eta'), \ \mathcal{B}(G \to KK\eta'), \ \mathcal{B}(G \to \pi \pi \eta')=0.00082, 0.011, 0.090$

• X(2370) is observed in $J/\psi \rightarrow \gamma K \bar{K} \eta'$

- Measured mass: $2341.6 \pm 6.5 (stat.) \pm 5.7 (sys.)$ MeV
- $\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K \bar{K} \eta')$: 1.79 ± 0.23(stat.) ± 0.65(sys.) × 10⁻⁵

Search of X(2370)

• No X(2370) signal in $J/\psi \rightarrow \gamma \eta \eta \eta'$, $\mathcal{B}(J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma \eta \eta \eta')$ < 9.2 × 10⁻⁶ at 90% C.L.

• No contradiction to the calculation for X(2370) as 0⁻⁺ glueball

• Search X(2370) in more decays with high statistics J/ψ data to determine its J^{PC}

Structure near $p\bar{p}$ threshold

$X(1835)/X(p\bar{p})$

X(pp̄)

 Anomalous strong enhancement structure at pp
 threshold in J/ψ → γpp
 , firstly observed by
 BES, J^{PC} favor 0⁻⁺

● X(1835)

- Observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ (BESII, BESIII), J^{PC} favor 0^{-+}
- Anomaly line shape near pp
 threshold
- ? pp molecule state or bound state

Structure near $p\bar{p}$ threshold

Search of X(1835)

- $J/\psi \to \gamma \gamma \phi$
 - Flavor filter
 - First observation of $\eta(1475)/X(1835) \rightarrow \gamma \phi$, J^{PC} favor 0^{-+}
 - Sizable ss components
 - *X*(1835) seems unlikely to be a pure *NN* bound state

• $J/\psi \to \omega \pi^+ \pi^- \eta'$

- Provide information on $q\bar{q}$ or gluon component of X(1835)
- No evident signal of X(1835)
- $\mathcal{B}(J/\psi \to \omega X(1835) \to \omega \pi^+ \pi^- \eta') < 6.2 \times 10^{-5}$ at 90% C.L.

Phys.Rev.D 97 (2018) 5, 051101

Strange quarkonium(ss)

- Strangeonium spectroscopy is not well understood experimentally
 - Only 7 states in the expected spectrum assigned to the observed mesons(marked with red solid lines)
- Study of the strangeonium mesons is of particular interest
 - Bridge between light u, d quark and heavy c, b quark
 - Helps to identify the exotics

Recent highlights

Strange quarkonium(ss)

Partial wave analysis of $J/\psi \rightarrow K^+ K^- \pi^0$

- Reveal signals not observed before due to low statistics [Phys.Rev.Lett. 97 (2006) 142002]
- Precisely determine properties of intermediate states

Phys.Rev.D 100 (2019) 3, 032004

- $K\pi^0$
 - Dominated by $K^*(892)^{\pm}$
 - Observe $K_2^*(1980)^{\pm}$ and $K_4^*(2045)^{\pm}$ for the first time in J/ψ decays
- *K*⁺*K*[−]
 - Two broad 1⁻⁻ structures in K⁺K⁻
 - Possibly assigned to $\omega(1650)$ and $\rho(2150)$
 - Further studies on $J/\psi \to K_S K \pi$ and $J/\psi \to K^+ K^- \eta$ needed

Recent highlights

Strange quarkonium(ss)

Partial wave analysis of $\psi(3686) \rightarrow K^+ K^- \eta$

 Large statistics allows re-examine previous analysis [Phys.Rev.D 86 (2012) 072011] and study of K* states

● K⁺K⁻

- Observe $\phi(1680)$ and another 1^{--} state, which consistent with X(1750) reported by FOCUS
- Broad structure around 2.2 GeV contributed from:
 - 1^{--} : $\phi(2170)/\rho(2150)$ or both
 - 3^{--} : $\rho_3(2250)$
- Difficult to distinguish these excited ρ and ϕ states due to limited statistics
 - Need help from other decays, e.g. $\psi(3686) \rightarrow \pi^+\pi^-\eta$

• Dominated by $\textit{K}^*_2(1980)^\pm$ and $\textit{K}^*_3(1780)^\pm$

Strange quarkonium(ss)

Strangeonium-like Zs

- Replace cc̄ with ss̄ in Z_c
 - Analogous structure: Z_s
- Search Z_s in $\pi^{\pm}\phi$ around $K^*\bar{K}$ threshold
- Amplitude analysis on $e^+e^- \rightarrow \phi \pi \pi$
 - Can be described by $\phi \sigma$, $\phi f_0(980)$, $\phi f_0(1370)$, $\phi f_2(1270)$
 - Upper limit on the cross section of Z_s at 90% C.L. for different mass/width hypotheses determined

Phys.Rev.D 99 (2019) 1, 011101

108.49 pb⁻¹@ 2.125 GeV

Summary

- Glueball
 - Production of $f_0(1710)$ ~10 times larger than $f_0(1500)$ in radiative J/ψ decays
 - $f_0(1710)$ largely overlap with scalar glueball
 - X(2370) observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, $\gamma K \bar{K} \eta'$, and no signal in $J/\psi \rightarrow \gamma \eta \eta \eta'$
- Structure near pp
 threshold
 - $\eta(1475)/X(1835)$ observed in $J/\psi \to \gamma\gamma\phi$
 - No X(1835) signal in $J/\psi \rightarrow \omega \pi^+ \pi^- \eta'$
- Strangeonium
 - X(1750) and possible $\phi(2170)$ observed in $\psi(3686) \rightarrow K^+ K^- \eta$
 - Two 1^{--} structures, possibly $\omega(1650)$ and $\rho(2150),$ observed in $J/\psi\to K^+K^-\pi^0$
 - Upper limit of Z_s determined in $e^+e^- \rightarrow \phi \pi \pi$
- BESIII already collected ${\sim}10{\rm B}\,{\rm J}/\psi,\,{\sim}3{\rm B}\,\psi(3686)$ and going to run for another 10 years
- ★ Using the unprecedented high statistics data, more fascinating results in light meson spectroscopy are expected

BACK UP

Beijing Electron Positron Collider(BEPC)

- Start construction since 1984
- *E_{cm}*: 2 ~ 4.6 GeV (5.0 GeV since summer 2019)

BEPC(1989-2005)

•
$$L_{\text{peak}} = 1.0 \times 10^{31} (\text{cm}^2 \cdot \text{s})^{-1}$$

BEPCII(2008-now)

•
$$L_{\text{peak}} = 1.0 \times 10^{33} (\text{cm}^2 \cdot \text{s})^{-1}$$

(April 5, 2016)

BESIII detector

Glueball spectrum

- Those states with ordinary quantum number can be mixed with nearby qq
 states
 - Systematical study needed in the identification

Scalar glueball candidate

s.Rev.D 8	7 (2013) 9, 0	92009	Phys.Rev.D 98	(2018)	7, 072	003	Phys	.Rev.D	92 (2015) 5, 052003	
Events, 0.020 GeV/c ² Events, 0.020 GeV/c ² 200	M	all Events / 20 MeV/c ²		2 ⁴ mbin=1.42 + Data - Global I	na na tist Maria	10 ⁵ 10 ⁵ 10 ¹ 10 ¹ 10 ¹ 10 ¹ 10 10					Relative Stave (2004 and maximum)
	1.5 2 2 M _{rp1} (GeV/c ²)	۵ 5 3	4 1 12 14 16 18 2 Mass(K ₆ K ₆	1 11 1 2.2 2.4) [GeV/c ²]	<u>11 11</u> 26 28 3	, L	0.5 1.	0 1.5 Mas	2.0 s(1 ⁰ 11 ⁰) [GeV/c ²]	2.5	10 ⁻⁴ 3.0
ind _o	1.5 2 2 M _{iji} (GeV/c ²)	1.5 3 .5 3	4 12 14 16 18 2 Mass(K ₈ K ₈	1411 11 " 2.2 2.4 .) [GeV/c ²]	Resonance	1 M (MeV/c ²)	0.5 1.	0 1.5 Mas Γ (MeV/c ²)	2.0 (π ⁰ π ⁰) [GeV/c ²] Γ _{PDG} (MeV/c ²)	2.5 Branching fraction	3.0 10 ⁻⁴ Significance
	1.5 2 2 M _{ηη} (GeV/c ²)	15 3	2 12 14 18 18 2 4 1 12 14 18 18 2 Mass(K ₈ K ₈	11 2.2 2.4 .) [GeV/c ²]	Resonance K*(892)	1 <u>M (MeV/c²)</u> 896	0.5 1. M _{PDG} (MeV/c ²) 895.81 ± 0.19	0 1.5 Mas Γ (MeV/c ²) 48	$\frac{2.0}{6}$ s(tPtt) [GeV(c ²) Γ_{PDG} (MeV/c ²) 47.4 ± 0.6	2.5 Branching fraction (6.28 ^{+0.10+0.39})×10 ⁻⁶	10 ⁻⁴ Significance 35σ
	1.5 2 2 M _{rpl} (GeV/c ²)	5 3	a 1 1.2 1.4 1.6 1.8 2 Mass(K ₆ K ₆) [GeV/c ²]	Resonance K*(892) K_1(1270)	M (MeV/c ²) 896 1272	0.5 1. <i>M_{PDG}</i> (MeV/c ²) 895.81 ± 0.19 1272 ± 7	0 1.5 Mas Γ (MeV/c ²) 48 90	$\Gamma_{PDG} (MeV/c^2)$ 47.4 ± 0.6 90 ± 20	2.5 Branching fraction $(6.28^{+0.16+0.99}_{-17-0.52}) \times 10^{-6}$ $(8.54^{+1.07+2.53}_{-1.27-21.1}) \times 10^{-7}$	Significance 350 160
	1.5 2 2 M _{rpl} (GeV/c ²)	<u>.</u>	4 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2 Mass(K _S K _S) [GeV/c ²]	Resonance K*(892) K_1(1270) f_0(1370)	1 M (MeV/c ²) 896 1272 1350 ± 9 ⁺¹² ₋₂	0.5 1. <i>M_{PDG}</i> (MeV/c ²) 895.81 ± 0.19 1272 ± 7 1200 to 1500	0 1.5 Mas $\Gamma (MeV/c^2)$ 48 90 231 ± 21 ^{±28} _{48}	Σ.0 Σ.0 (m ² m ²) [GeVVe ²] Γ _{PDG} (MeV/c ²) 47.4 ± 0.6 90 ± 20 200 to 500 500	2.5 Branching fraction $(6.28^{+0.16+0.99}_{-0.753}) \times 10^{-6}$ $(8.54^{+0.023}_{-1.03}) \times 10^{-7}$ $(1.07^{+0.08+0.25}_{-0.03}) \times 10^{-5}$	3.0 ⁻⁴ Significance 35σ 16σ 25σ
	1.5 2 2 M _{rpl} (GeV/c ²)	<u>5</u> 3	2 11 12 14 16 18 2 1 12 14 16 18 2 Mass(K ₆ K ₅	∦ †¶ `∦ '" 22 24 .)[GeV/c ²]	Resonance K*(892) K_1(1270) f_0(1370) f_0(1500)	M (MeV/c ²) 896 1272 1350 ± 9 ⁺¹² 1505	0.5 1. M _{PDO} (MeV/c ²) 895.81±0.19 1272±7 1200 to 1500 1504±6	0 1.5 Mas $\Gamma (MeV/c^2)$ 48 90 231 ± 21 ²⁸ 109	Ξ.0 s(m ² m ²) [GeV/c ²] Γ _{PDO} (MeV/c ²) 47.4 ± 0.6 90 ± 20 200 to 500 109 ± 7 109 ± 7	$\begin{array}{c} \hline & \\ \hline \\ \hline$	10 ⁻⁴ 3.0 Significance 35σ 16σ 25σ 23σ
	1.5 2 2 1.5 M ₁₇₁ (GeV/c ²)	<u></u> 3	2 17 1 17 17 1 17 1 17 17 1 1 1.2 1.4 1.6 1.8 2 Mass(K ₂ K ₃	₩ ₩ ₩ " 22 24)[GeV/c ²]	Resonance K [*] (892) K ₁ (1270) f ₀ (1370) f ₀ (1700) f ₀ (1710)	M (MeV/ c^2) 896 1272 1350 $\pm 9^{\pm 12}_{-2}$ 1505 1765 $\pm 2^{\pm 1}_{-1}$	0.5 1. M _{PD0} (MeV/c ²) 895.81 ± 0.19 1272 ± 7 1200 to 1500 1504 ± 6 1723 ⁺⁵	0 1.5 Mas Γ (MeV/c ²) 48 90 231 ± 21 ± 38 109 146 ± 3 ± 7 10	Ξ.0 a(m ² m ²) [GeV/c ²] Γ _{PDD} (MeV/c ²) 47.4 ± 0.6 90 ± 20 200 to 500 109 ± 7 139 ± 8	$\begin{array}{c} \hline & \\ \hline \\ \hline$	3.0 Significance 35σ 16σ 25σ 23σ ≫ 35σ
	1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 " 2.2 2.4 .)[GeV/c ²]	Resonance K [*] (892) K ₁ (1270) f ₀ (1370) f ₀ (1500) f ₀ (1700) f ₀ (170)	$\frac{M (MeV/c^3)}{896}$ $\frac{896}{1272}$ 1505 $\frac{1765 \pm 2^{+12}_{-1}}{1505}$ $\frac{1765 \pm 2^{+1}_{-1}}{1870 \pm 7^{+2}_{-2}}$	0.5 1. M _{PDO} (MeV/c ²) 895.81±0.19 1272±7 1200 to 1500 1504±6 1723 ¹ / ₂	0 1.5 Mas Γ (MeV/c ²) 48 90 231 ± 21 ²³⁸ / ₄₇ 109 146 ± 3 ⁺³ / ₄₇ 146 ± 14 ²⁵ / ₄₇	L0 2.0 s(n ² n ²) Γ _{PDG} (MeV/c ²) 47.4 ± 0.6 90 ± 20 200 to 500 109 ± 7 139 ± 8	2.5 Branching fraction $(6.28^{+0.18+0.97}) \times 10^{-6}$ $(8.54^{+0.23}) \times 10^{-7}$ $(1.0^{-0.08+0.03}) \times 10^{-7}$ $(1.39^{+0.18+0.05}) \times 10^{-5}$ $(2.00^{+0.02+0.05}) \times 10^{-5}$ $(2.00^{+0.02+0.05}) \times 10^{-5}$ $(1.14^{-0.06+0.05}) \times 10^{-5}$	10 ⁻⁴ Significance 35σ 16σ 25σ 23σ ≫ 35σ 24σ
Resource	1.5 2 2 M _{ηγ1} (GeV/c ²)	.5 3 With (MeV/c ²)	$\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\left[\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2$	2.2 2.4) [GeV/c ²]	Resonance K*(892) K_1(1270) fo(1370) fo(1500) fo(1710) fo(2200)	$\frac{M \ ({\rm MeV}/c^2)}{896} \\ \frac{896}{1272} \\ \frac{1350 \ \pm 9^{-12}_{-1}}{1505} \\ \frac{1765 \ \pm 2^{-1}_{-1}}{1870 \ \pm 7^{-2}_{-3}} \\ 2184 \ \pm 5^{-4}_{-2} \\ \frac{1}{2}$	$\begin{array}{ccc} 0.5 & 1.\\ \hline M_{FDG} & (MeV/c^2) \\ 895.81 \pm 0.19 \\ 1272 \pm 7 \\ 1200 & 10 & 1500 \\ 1504 \pm 6 \\ 1723\frac{16}{12} \\ \dots \\ 2189 \pm 13 \end{array}$	0 1.5 Mas $\Gamma (MeV/c^2)$ 48 90 231 ± 21 ²⁵⁸ / ₄₄ 146 ± 3 ⁴⁷ / ₁₃ 146 ± 14 ²⁷ / ₁₃ 364 ± 9 ²⁴ / ₁₄ 146 ± 9 ²⁴ / ₁₃ 364 ± 9 ²⁴ / ₁₄	Image: Second	2.5 Branching fraction $(6.28^{+0.114+0.39}) \times 10^{-6}$ $(8.34^{-1.39+2.39}) \times 10^{-5}$ $(1.59^{-0.114+0.39}) \times 10^{-5}$ $(1.59^{-0.114+0.39}) \times 10^{-5}$ $(1.59^{-0.114+0.39}) \times 10^{-5}$ $(1.11^{-0.014+0.39}) \times 10^{-5}$ $(1.11^{-0.014+0.39}) \times 10^{-5}$ $(2.27^{-0.014+0.39}) \times 10^{-5}$ $(2.77^{-0.014+0.39}) \times 10^{-5}$ $(2.77^{-0.014+0.39}) \times 10^{-5}$	10 ⁻⁴ Significance 35σ 16σ 25σ 23σ ≫ 35σ 24σ ≫ 35σ
Resonance fa(1500)	1.5 2 2 M _{rp1} (GeV/e ²) Mass (MeV/c ²) 1468: 11:22	Wiała (MeV/c ²) 136 ⁺¹³⁻²⁸	$\frac{2}{1} \frac{\left[\frac{1}{2} + \frac{1}{12} + \frac{1}{12}$	Significance 8.27	Resonance K [*] (892) K ₁ (1270) f ₀ (1370) f ₀ (1710) f ₀ (2200) f ₀ (2200) f ₀ (2200)	$\frac{M \ ({\rm MeV}/c^2)}{886} \\ \frac{886}{1272} \\ \frac{1350 \pm 9^{+1}_{\pm 2}}{1350 \pm 2^{+1}_{\pm 1}} \\ \frac{1870 \pm 7^{+1}_{\pm 2}}{1870 \pm 7^{+1}_{\pm 2}} \\ \frac{11870 \pm 7^{+1}_{\pm 2}}{2441 \pm 10 \pm 7} \\ \frac{2441 \pm 10 \pm 7}{4411 \pm 10 \pm 7} \\ \frac{110}{100} \\ $	0.5 1. $M_{TPG} (MeV/c^2)$ 895.81 ± 0.19 1272 ± 7 1200 to 1500 1504 ± 6 1723_{-5}^{16} 2189 ± 13 	$\begin{array}{c} 0 & 1.5\\ Mas\\ \hline \Gamma (MeV/c^2)\\ 48\\ 90\\ 231 \pm 21 \frac{c_{28}}{c_{24}}\\ 146 \pm 3 \frac{c_{13}}{c_{13}}\\ 146 \pm 4 \frac{c_{13}}{c_{13}}\\ 364 \pm 9 \frac{c_{14}}{c_{13}}\\ 349 \pm 18 \frac{c_{13}}{c_{13}}\\ \end{array}$	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.5 Branching fraction $(6.28^{+0.17+0.29}_{-0.17+0.29}) \times 10^{-6}$ $(8.44^{+0.12+0.29}_{-0.29}) \times 10^{-5}$ $(1.59^{+0.19+0.29}_{-0.29}) \times 10^{-5}$ $(2.00^{+0.00+0.03}_{-0.09}) \times 10^{-5}$ $(2.12^{+0.00+0.03}_{-0.09}) \times 10^{-5}$ $(2.12^{+0.00+0.03}_{-0.09}) \times 10^{-5}$ $(2.12^{+0.00+0.03}_{-0.09}) \times 10^{-5}$ $(2.12^{+0.00+0.03}_{-0.09}) \times 10^{-5}$ $(2.12^{+0.00+0.03}_{-0.09}) \times 10^{-5}$	3.0 Significance 35σ 16σ 25σ ≥ 35σ 24σ ≥ 35σ 35σ 35σ
Resonance <i>f</i> _1(1590) <i>f</i> _2(1710)	$\frac{1.5 2 2}{M_{rp} (GeV/c^2)}$ $\frac{Mass (MeV/c^2)}{1408_{-15-21}^{-11}}$ $\frac{1408_{-15-21}^{-11}}{179 \approx 10}$	Widh (MeV/c ²) 136 ⁻¹²⁻¹³ 172 ± 10 ⁻¹² 172 ± 10 ⁻¹²	$\frac{2}{1} \frac{\left[\frac{1}{2} + \frac{1}{2} + $	Significance 8.20 25.00	Resonance K* (892) K_1 (1270) f_0 (1370) f_0 (1370) f_0 (1270) f_0 (2200) f_0 (2330) f_2 (1270)	$\frac{M (MeV/c^2)}{886}$ $\frac{886}{1272}$ $\frac{1550 \pm 9 \frac{12}{2}}{1500 \pm 7 \frac{13}{2}}$ $\frac{1765 \pm 2 \frac{11}{11}}{1870 \pm 7 \frac{13}{2}}$ $\frac{2184 \pm 5 \frac{14}{24}}{2184 \pm 5 \frac{14}{24}}$ $\frac{2411 \pm 10 \pm 7}{1275}$	0.5 1. $M_{TCO} (MeV/c^2)$ 895.81 ± 0.19 1272 ± 7 1200 to 1500 1504 ± 6 $1723\frac{16}{2}$ 2189 ± 13 1275.5 ± 0.8	$\begin{array}{c} 0 & 1.5\\ \text{Mas}\\ \hline \Gamma (\text{MeV}/c^2)\\ 48\\ 90\\ 231\pm 21\frac{24}{48}\\ 109\\ 146\pm 3\frac{1.7}{13}\\ 146\pm 14\frac{21}{13}\\ 364\pm 9\frac{1.7}{13}\\ 364\pm 9\frac{1.7}{13}\\ 185\\ 185\\ \end{array}$	2.0 2.0	$\begin{array}{c} 1\\ \hline 2.5\\ \hline \\ \hline$	3.0 Significance 35σ 16σ 25σ 23σ ≫ 35σ 35σ 35σ 35σ 35σ 35σ
Resonance f.(1300) f.(1710) f.(1210)	$\frac{1.5}{1.5} \frac{2}{2} \frac{2}{2}$ $M_{ref} (GeV/c^2)$ $\frac{Mass (MeV/c^2)}{1400 \frac{111.22}{110.22}}$ $\frac{1400 \frac{111.22}{110.22}}{2001 \pm 11.22}$	Wiah (MeV/c ²) 136 ⁻¹³⁻²⁵ 172 : 10 ⁻¹⁵ 237 ⁻¹²¹ 237 ⁻¹²¹		Significance 8.207 25.007 13.907 13.907 13.907	Resonance K*(892) K_1(1270) fo(1370) fo(1370) fo(1200) fo(1200) fo(1200) fo(12200) fo(122	$M (MeV/c^2)$ 896 1272 1350 $\pm 9t_{-2}^{+12}$ 1505 1765 $\pm 2t_{-1}^{+1}$ 1870 $\pm 7t_{-2}^{-3}$ 2184 $\pm 5t_{-2}^{+1}$ 2181 $\pm 10 \pm 7$ 1275 1516 ± 1 2271 $\pm 10t_{-}^{0}$	$\begin{array}{cccc} 0.5 & 1.\\ \hline M_{FDG} & (MeV/c^2) \\ 895.81 \pm 0.19 \\ 1272 \pm 7 \\ 1200 \ \text{to} 1500 \\ 1504 \pm 6 \\ 1723 \frac{1}{5} \\ \dots \\ 2189 \pm 13 \\ \dots \\ 2189 \pm 13 \\ \dots \\ 1275.5 \pm 0.8 \\ 1325 \pm 5 \\ 3247 \frac{15}{5} \\ 0.277 \frac{1}{5} \end{array}$	$\begin{array}{c} 0 & 1.5\\ \\ Max\\ \hline \Gamma (MeV/c^2)\\ 8\\ 8\\ 90\\ 231\pm 21^{-28}_{-48}\\ 109\\ 146\pm 3^{-1}_{-1}\\ 146\pm 14^{-1}_{-1}\\ 364\pm 9^{-2}_{-1}\\ 349\pm 18^{+23}_{-1}\\ 185\\ 75\pm 1\pm 1\\ 8\\ 8\\ 75\pm 1\pm 1\end{array}$	$1 + \frac{1}{20}$ $1 + \frac{1}{20}$	$\frac{1}{2.5}$ Branching fraction $(6.25^{+0.17+0.27}_{-0.17+0.27}) \times 10^{-6}$ $(8.54^{+1.15+0.27}_{-0.17+0.27}) \times 10^{-7}$ $(1.07^{-0.08+0.03}_{-0.07+0.07}) \times 10^{-4}$ $(1.11^{-0.08+0.03}_{-0.07+0.07}) \times 10^{-4}$ $(4.55^{-0.07+0.07}_{-0.07+0.07}) \times 10^{-4}$ $(4.55^{-0.07+0.07}_{-0.07+0.07}) \times 10^{-5}$ $(7.99^{+0.07+0.07}_{-0.07+0.07}) \times 10^{-5}$ $(7.99^{+0.07+0.07}_{-0.07+0.07}) \times 10^{-5}$	30 Significance 35σ 16σ 25σ 23σ ≫ 35σ 24σ ≫ 35σ 35σ 35σ 35σ 35σ 35σ
Resource [4:0300 [4:0200 [4:0200 [4:0200 [4:0200]	Mass (MeV/c ²) Mass (Width (MeV/c ²) 136 ⁻¹⁴⁻²⁸ / ₁₆₋₂₈	ボリノターフターフッキュ ボット 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Significance 8.2 <i>a</i> 11.0 <i>a</i> 11.0 <i>a</i> 11.0 <i>a</i>	T T T 2.6 2.8 3 Resonance $K^*_1(1270)$ $f_0(1370)$ $f_0(1370)$ $f_0(1370)$ $f_0(1270)$ $f_0(2200)$ $f_0(2330)$ $f_2(1270)$ $f_2(1525)$ $f_2(1240)$ h^+ $huggp$	$\begin{array}{c} M \ (\mathrm{MeV}/c^2) \\ 886 \\ 1272 \\ 1350 \pm 9^{+12}_{-2} \\ 1905 \pm 2^{+1}_{-1} \\ 1870 \pm 7^{-2}_{-3} \\ 2184 \pm 5^{+1}_{-2} \\ 2411 \pm 10 \pm 7 \\ 1275 \\ 1516 \pm 1 \\ 2233 \pm 34^{+29}_{-29} \end{array}$	$\begin{array}{c} 0.5 & 1.\\ \hline M_{FOG} \; (MeV/c^2) \\ 895.81 \pm 0.19 \\ 1272 \pm 7 \\ 1200 to \; 1500 \\ 1504 \pm 6 \\ 1723^{+6}_{-5} \\ \\ 2189 \pm 13 \\ \\ 1275.5 \pm 0.8 \\ 1525 \pm 5 \\ 2345^{+6}_{-50} \end{array}$	$\begin{array}{c} 0 & 1.5\\ \\ Max\\ \hline \\ \hline \\ \hline \\ 80\\ 231\pm21^{+28}_{-24}\\ 146\pm4^{+7}_{-15}\\ 146\pm4^{-7}_{-15}\\ 364\pm9^{+7}_{-3}\\ 349\pm18^{-23}_{-18}\\ 185\\ 75\pm1\pm1\\ 507\pm37^{-24}_{-21}\\ \end{array}$	$\begin{array}{c c} & & & 1\\ & & & 2.0 \\ \hline & & & 2.0 \\ \hline & & & & 2.0 \\ \hline & & & & & & \\ & & & & & & \\ & & & &$	25 Branching fraction (6.32%)(1+32%)×10* (1.67%)(1+32%)×10* (1.67%)(1+32%)×10* (1.67%)(1+32%)×10* (1.67%)(1+32%)×10* (1.67%)(1+32%)×10* (1.67%)(1+32%)×10* (1.67%)(1+32%)×10* (1.68%)(1+32%)(1+32%)×10* (1.68%)(1+32%)(1+32%)×10* (1.68%)(1+32\%)(1+32\%)(1+32\%)(1+32\%)(1+32\%)(1+32\%)(1+32\%)(1+32\%)(1+32\%)(1+32\%	3.0 ⁻⁴ 3.0 ⁻⁴ 3.0 ⁻⁴ 3.0 ⁻⁴ 3.0 ⁻⁴ 1.6 ⁻ 2.5 ⁻ 2.3 ⁻ 3.5 ⁻ 3.5 ⁻ 3.5 ⁻ 3.5 ⁻ 3.5 ⁻ 3.5 ⁻ 3.5 ⁻ 2.6 ⁻ 3.5 ⁻ 2.6 ⁻ 3.5 ⁻ 3.5 ⁻ 2.6 ⁻ 3.5 ⁻

- $f_0(1710) \sim 10$ times larger production than $f_0(1500)$ in $J/\psi \rightarrow \gamma \eta \eta$, $\gamma K_S K_S$
 - Production of $f_0(1710)$ in radiative J/ψ decay (> 1.7×10^{-3}) close to theoretical prediction of scalar glueball (3.8×10^{-3})
- Broad scalar contribution ~2.1 GeV observed in $J/\psi \rightarrow \gamma \eta \eta$, $\gamma K_S K_S$, also seen in $J/\psi \rightarrow \gamma \pi^0 \pi^0$

Scalar glueball candidate

LQCD prediction	Experimental results					
	$\mathcal{B}(J/\psi \to \gamma f_0(1710) \to \gamma K\bar{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$					
Mass: 1.5~1.7 GeV	$\mathcal{B}(J/\psi \to \gamma f_0(1710) \to \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$					
$\mathcal{B}(J/\psi \rightarrow \gamma G_{0+})=$	$\mathcal{B}(J/\psi \to \gamma f_0(1710) \to \gamma \omega \omega) = (3.1 \pm 1.0) \times 10^{-4}$					
$3.9(9) \times 10^{-3}$	$\mathcal{B}(J/\psi \to \gamma f_0(1710) \to \gamma \eta \eta) = (2.35^{+0.13}_{-0.11} + 1.24) \times 10^{-4}$					
	$\implies \mathcal{B}(J/\psi \to \gamma f_0(1710)) > 1.7 \times 10^{-3}$					
$f_0\left(1710 ight)$ largely overlapped with scalar glueball						

Tensor glueball candidate

- f₂(2340): a good tensor glueball candidate
 - largely produced in $J/\psi \rightarrow \gamma \eta \eta$, $\gamma \phi \phi$, significant tensor contribution ~2.4 GeV also seen in $J/\psi \rightarrow \gamma \pi^0 \pi^0$, $\gamma K_S K_S$
 - Measured mass close to LQCD prediction of tensor glueball(2.3~2.4 GeV)
- Production of $f_2(2340)$ in radiative J/ψ decay is much lower than LQCD prediction (1.1×10^{-2})
 - More measurements needed

$X(1835)/X(p\bar{p})$

● X(pp̄)

 Anomalous strong enhancement structure at pp
 threshold in J/ψ → γpp
 , firstly observed by
 BES, J^{PC} favor 0⁻⁺)

Phys.Rev.Lett. 108 (2012) 112003

● X(1835)

- Observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ (BESII, BESIII), J^{PC} favor 0^{-+}
- ? pp molecule state or bound state
- Also seen in $J/\psi \rightarrow \gamma K_S K_S \eta$ (J^{PC} determined to be 0^{-+})

BACK UP

Search of Z_s in $e^+e^- \rightarrow \phi \pi \pi$

Phys.Rev.D 99 (2019) 1, 011101

- Amplitude analysis performed
 - Well described by φσ, φf₀(980), φf₀(1370), φf₂(1270)
 - No Z_s signal
 - Upper limit on the cross section of Z_s at 90% C.L. for different mass/width hypotheses determined [®]/₄₄