Light meson decays at BESIII

XiaoLin Kang (on behalf of BESIII Collaboration)
China University of Geosciences (Wuhan) (CUG)
16.Aug.2021

中国物理学会高能物理分会第十三届全国粒子物理学术会议

Beijing Electron and Positron Collider(BEPCII)

- Symmetric, double rings e⁺e⁻ collider @ √ s=2-4.9GeV
- Peak luminosity $\approx 10^{33} \text{cm}^{-2} \text{s}^{-1}$ at $\sqrt{\text{s}} = 3.770 \text{GeV}$
- Crab-Waist interaction scheme with the crossing angle of 11 mrad
- Top-up operation since 2018

BESIII detector

- Acceptance: 93% of 4π
- Main Drift Chamber: small cell & gas
 - ✓ σ_{xy} =130 µm, σ_{P} /P=0.5%@1 GeV
 - $\checkmark \sigma_{\text{dE/dx}} = 6\%$
- Time of Flight (TOF)
 - \checkmark σ_T =70 ps for barrel layers
 - ✓ σ_T =110 ps (65 ps with updated MRPC) for endcaps
- Super Conducting Solenoid: 1.0T (0.9T for 2012)
- **Electromagnetic Calorimeter**: Csl Crystals
 - ✓ σ_E/E=2.5%@1 GeV
 - ✓ Position resolution 6mm@1GeV
- RPC Muon ID: 9 layer

Data set and Physics at BESIII

- Wide physics topics @ √s=2-4.9GeV
- Light hadron Physics
- Charmonium physics
- XYZ particles
- Discrete symmetries breaking
- Charm physics
- Physics with tau lepton
- R-value measurement
- ...

Chin. Phys. C 44, 040001 (2020)

η/η' sample from J/ ψ decays at BESIII

- Understand the low energy QCD
- Test the predictions of ChPT

- Probe the u-d quark mass difference
- Search for discrete symmetries violation (CV, CPV) and test fundamental symmetries
- Probe physics beyond the SM

- High production rate of η/η' in J/ψ decays
 - radiative decays: $5.2 \times 10^7 \, \eta'$, $1.1 \times 10^7 \, \eta$
 - hadronic decays: $6.5 \times 10^6 \, \eta'$, $2.5 \times 10^7 \, \eta$
- Unique opportunity to investigate the decays of η/η'

Observation of $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

PRD 103,072006 (2021)

- The process is expected to proceed through an intermediate virtual photon $\eta' \rightarrow \pi^+ \pi^- \gamma^* \rightarrow \pi^+ \pi^- \mu^+ \mu^-$, may involve the box anomaly contribution
- Due to the low phase space, the predictions for the branching fraction of $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ are in the range of (1.5–2.5) ×10⁻⁵
- Most stringent UL (2.9×10^{-5} @90% CL.) is from BESIII with 225 M J/ ψ PRD87, 092011 (2013)
- 1.31×10⁹ J/ ψ are used to search for this decay via J/ ψ $\rightarrow \gamma \eta' (\pi^+ \pi^- \mu^+ \mu^-)$
- PID and 4 constraint Kinematic fit
- Main backgrounds are from $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$
- 53±9 signal events are observed

$$\mathcal{B}(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = (1.97 \pm 0.33(\text{stat}) \pm 0.19(\text{syst})) \times 10^{-5}$$

The study of $\eta' \rightarrow \pi^+ \pi^- e^+ e^-$ PRD 103,092005 (2021)

- The process is expected to proceed through an intermediate virtual photon $\eta' \to \pi^+ \pi^- \gamma^* \to \pi^+ \pi^- e^+ e^-$, exhibit a contribution from the box anomaly
- Two VMD models predict the BF to be $(2.17\pm0.21)\times10^{-3}$ and $(2.27\pm0.13)\times10^{-3}$ (arXiv: 1010.2378)
- Br($\eta' \rightarrow \pi^+ \pi^- e^+ e^-$) = (2.13^{+0.17}_{-0.31})×10⁻³ from ChPT model (EPJA 33(2007) 95)
- With 225 M J/ ψ , BESIII measured the Br = $(2.11\pm0.12_{stat}\pm0.15_{syst.})\times10^{-3}$ (PRD 87 (2013) 092011)
- 1.31×10^9 J/ ψ are used to update this analysis via $J/\psi \rightarrow \gamma \eta' (\pi^+\pi^-e^+e^-)$
- Photon conversion on beam pipe is rejected
- 2% of contamination from $\eta' \rightarrow \pi^+ \pi^- \gamma$

$$\mathcal{B}(\eta' \to \pi^{+}\pi^{-}e^{+}e^{-})$$

$$= \frac{N_{\eta' \to \pi^{+}\pi^{-}e^{+}e^{-}} \times \varepsilon_{\eta' \to \pi^{+}\pi^{-}\gamma} \times \mathcal{B}(\eta' \to \pi^{+}\pi^{-}\gamma)}{N_{\eta' \to \pi^{+}\pi^{-}\gamma} \times \varepsilon_{\eta' \to \pi^{+}\pi^{-}e^{+}e^{-}}}$$

$$= (2.42 \pm 0.05_{\text{stat}} \pm 0.08_{\text{syst}}) \times 10^{-3}$$

Search for CP violation in $\eta' \rightarrow \pi^+ \pi^- e^+ e^-_{PRD 103,092005 (2021)}$

- Test of a new sources of CP violation beyond the CKM phase and outside flavor-changing processes
- CP asymmetry arises from the interference between the CP conserving magnetic and CP-violating electric transition [Dao-Neng Gao, Mod.Phys.Lett.A17 (2002) 1583]

The interference term can be extracted by the asymmetry of sin2φ distribution

$$\mathcal{A}_{\varphi} = \frac{N(\sin 2\varphi > 0) - N(\sin 2\varphi < 0)}{N(\sin 2\varphi > 0) + N(\sin 2\varphi < 0)} = (2.9 \pm 3.7_{\text{stat}} \pm 1.1_{\text{syst}})\%$$

Consistent with 0 within uncertainties, no CP-violation.

The rare decay of $\eta' \rightarrow \pi^0 \pi^0 \pi^0$ PRD 101,032001(2020)

- $\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$ is highly suppressed
 - S-wave is CP-violation process, induced by the QCD Lagrangian θ -term \Rightarrow Br \sim 10⁻²³
 - CP-conserving higher order PRD 85, 014014 (2012)
 - ✓ D-wave pion loop \Rightarrow ChPT and VMD model (…but not strictly based on EFT) predict the Br to be at the level of 10^{-8}
 - ✓ Two f_2 tensor mesons → contribution is expected very small

- GAMS- 4π Collaboration presented the UL on Br< 3.2×10^{-4} at 90% C.L. Mod. Phys. Lett. A 29, 1450213 (2014)
- 1.31×10⁹ J/ ψ are used to search for this decay via J/ $\psi \rightarrow \gamma \eta' (\pi^0 \pi^0 \pi^0 \pi^0)$

The rare decay of $\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$ (cont)

PRD 101,032001(2020)

- At least 9 isolated photons and no charged tracks
- Energy-momentum conservation + mass-constraint kinematic fits are performed to reconstruct and select π^0 s
- No significant η' signal
- Main backgrounds are from $J/\psi \rightarrow \gamma \eta'$, $\eta' \rightarrow \pi^0 \pi^0 \eta (\pi^0 \pi^0 \pi^0)$

With a Bayesian approach, the UL at 90% CL is set as:

$$\mathcal{B}(\eta' \to 4\pi^0) < 4.94 \times 10^{-5}$$

A factor 6 smaller than the previous most stringent result (Mod.Phys.Lett.A29,1450213)

Search for the rare decay of $\eta' \rightarrow \gamma \gamma \eta$

PRD 100, 052015 (2019)

- Within the frameworks of the linear σ model (L σ M) and VMD model prd 102, 034026 (2020)
 - ✓ BF($\eta' \rightarrow \gamma \gamma \pi^0$)=3.8×10⁻³ and BF($\eta' \rightarrow \gamma \gamma \eta$)=2.0×10⁻⁴
 - ✓ With 1.31×10⁹ J/ψ, BESIII reported the first observation of η'→γγπ⁰

BF(
$$\eta' \rightarrow \gamma \gamma \pi^0$$
)=(3.20±0.07±0.23)×10⁻⁴

$$BF(\eta' \rightarrow \gamma \gamma \pi^0)_{NR} = (6.16 \pm 0.64 \pm 0.67) \times 10^{-4}$$

- GAMS- 4π reported the most stringent UL BF $(\eta' \rightarrow \gamma\gamma\eta) < 8 \times 10^{-3}$ at the 90% CL [Phys. Atom. Nucl. 78, 1043 (2015)]
- Search for this decay via $J/\psi \rightarrow \gamma \eta'(\gamma \gamma \eta)$ with $\eta \rightarrow \gamma \gamma$ with 1.31×10^9 J/ ψ sample

Search for the rare decay of $\eta' \rightarrow \gamma \gamma \eta$

PRD 100, 052015 (2019)

- at least 5 isolated photons and no charged tracks
- $\delta_{\eta'\eta}^2 = (\frac{M(\gamma\gamma\eta) m(\eta')}{\sigma_1})^2 + (\frac{M(\gamma\gamma) m(\eta)}{\sigma_2})^2$ and kinematic fits are used to construct signal events
- Main backgrounds are from $J/\psi \rightarrow \gamma \eta'(\pi^0 \pi^0 \eta)$, $J/\psi \rightarrow \gamma \eta'(\gamma \omega \rightarrow \gamma \pi^0)$ and $J/\psi \rightarrow \gamma \eta \pi^0$
- A global fit yields $24.9\pm10.3~\eta' \rightarrow \gamma\gamma\eta$ signal events with a statistical significance of 2.6σ

$$B(\eta' \to \gamma \gamma \eta) = (8.25 \pm 3.41 \pm 0.72) \times 10^{-5}$$

An UL at 90% CL is also set by Bayesian approach:

Precision measurement of the BFs of η' decays

PRL122, 142002 (2019)

(b)

- No absolute BF measurements due to difficulty of tagging its inclusive decays
- $J/\psi \rightarrow \gamma \eta'$ with γ conversions to e^+e^- (×3 for resolution of the radiative photon)

Precision measurements of $\eta' \rightarrow \gamma \pi^+ \pi^-$, $\eta \pi^+ \pi^-$, $\eta \pi^0 \pi^0$, γω, and γγ, using J/ $\psi \rightarrow \gamma \eta'$, but with the radiative photon detected by calorimeter EMC

$$\mathcal{B}(\eta' \to X) = \frac{N_{\eta' \to X}^{\text{obs}}}{\varepsilon_{\eta' \to X}} \frac{\varepsilon}{N_{J/\psi \to \gamma\eta'}^{\text{obs}}} f$$

Events/(0.001 GeV/c² Events/(0.005 J/w→n'e⁺e⁻ v conversions 1000 0.95 8.0 0.9 $M_{recoil}(e^+e^-)$ (GeV/c²) $M(\gamma \pi^+ \pi^-)$ (GeV/c²) Events/(0.001 GeV/c²) GeV/c²) (c)(d) Events/(0.001 0.92 0.94 0.96 0.98 0.95 0.9 $M(\pi^+\pi^-\eta)$ (GeV/c²) $M(\pi^0\pi^0\eta)$ (GeV/c²) =vents/(0.0025 GeV/c²) Events/(0.002 GeV/c² (e) 0.95 0.95 0.9 0.9 $M(\gamma\omega)$ (GeV/c²) $M(\gamma\gamma)$ (GeV/c²)

(a)

Total Fit

Background

Signal

3000

Precision measurement of the BFs of η' decays

PRL122, 142002 (2019)

			$\mathcal{B}(\eta' \to X)(9)$	%)	$\mathcal{B}/\mathcal{B}(\eta' o \eta \pi^+ \pi^-)$		
Decay mode	$N_{\eta' \to X}^{\mathrm{obs}}$	$\varepsilon_{\eta' \to X}(\%)$	This measurement	PDG [7]	This measurement	CLEO [9]	
$\eta' o \gamma \pi^+ \pi^-$	913106 ± 1052	44.11	$29.90 \pm 0.03 \pm 0.55$	28.9 ± 0.5	$0.725 \pm 0.002 \pm 0.010$	$0.677 \pm 0.024 \pm 0.011$	
$\eta^\prime o \eta \pi^+ \pi^-$	312275 ± 570	27.75	$41.24 \pm 0.08 \pm 1.24$	42.6 ± 0.7	•••	•••	
$\eta' o \eta \pi^0 \pi^0$	51680 ± 238	9.08	$21.36 \pm 0.10 \pm 0.92$	22.8 ± 0.8	$0.518 \pm 0.003 \pm 0.021$	$0.555 \pm 0.043 \pm 0.013$	
$\eta' \to \gamma \omega$	22749 ± 163	14.98	$2.489 \pm 0.018 \pm 0.074$	2.62 ± 0.13	$0.0604 \pm 0.0005 \pm 0.0012$	$0.055 \pm 0.007 \pm 0.001$	
$\eta' o \gamma \gamma$	70669 ± 349	43.79	$2.331 \pm 0.012 \pm 0.035$	2.22 ± 0.08	$0.0565 \pm 0.0003 \pm 0.0015$	$0.053 \pm 0.004 \pm 0.001$	

- Signal yields obtained by unbinned maximum likelihood fits to the invariant mass distributions
- BF(J/ $\psi \rightarrow \gamma \eta'$) = (5.27±0.03±0.05)×10⁻³ agrees with PDG value, with a significantly improved precision
- First direct measurement of absolute BFs for five η' decay modes
- The relative BFs are in agreement w.r.t. CLEO's result within two standard deviation

Conclusion

- J/ ψ decay provides a unique laboratory to study light meson decays
- With 2009+2012 J/ ψ data (1.3 Billion), BESIII Collaboration produced fruitful results related light meson decays
 - Observation of $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$
 - Search for CP violation in $\eta' \rightarrow \pi^+\pi^-e^+e^-$
 - Search for the rare decay of $\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$ and of $\eta' \rightarrow \gamma \gamma \eta$
 - Precision measurement of the BFs of η' decays
 - … and many other interesting results not covered in this talk
- And now to 10 Billion J/ ψ events collected at BESIII
 - a unique worldwide sample, allows to study light mesons with the unprecedented statistics
 - More interesting results are foreseen

Backup slides

Dalitz Plot Analysis of $\omega \rightarrow \pi^+\pi^-\pi^0$

PRD98, 112007 (2018)

- Provide further constraints to the calculation of EM transition form factor of $\omega \rightarrow \pi^0 \gamma^*$
- Test prediction of DP distributions in the dispersive framework (PRD86,054013(2012))
- In the isobar model, $\omega \to \pi^+\pi^-\pi^0$ decay can be described via intermediate $\rho\pi$ state. While the third pion can interact with the decay products of the ρ resonance (crossed-channel effect)

 $J/\psi \rightarrow \omega \eta$, with $\eta \rightarrow \gamma \gamma$ provide a clean sample of ω events

$$x = \frac{t - u}{\sqrt{3}R_{\omega}}, \qquad y = \frac{s - s_0}{R_{\omega}} + \frac{2(m_{\pi^{\pm}} - m_{\pi^0})}{m_{\omega} - 2m_{\pi^{\pm}} - m_{\pi^0}},$$

$$s_0 = (s+t+u)/3$$
, $R_\omega = \frac{2}{3}m_\omega(m_\omega - m_{\pi^+} - m_{\pi^-} - m_{\pi^0})$

Dalitz Plot Analysis of $\omega \rightarrow \pi^+\pi^-\pi^0$

PRD98, 112007 (2018)

$$z = |x + yi|^2$$
, $\phi = \arg(x + yi)$

$$|\mathcal{M}|^2 = \frac{|\vec{p}_+ \times \vec{p}_-|^2}{m_\omega} \cdot |\mathcal{F}|^2$$

pure P-wave PHSP: $|F|^2 = 1$

$$|F|^2 = 1 + 2\alpha z + 2\beta z^{3/2} \sin 3\phi$$

	[4]	PRD 91,094	4029	Theoretical pre	dictions		Experiment
		Ref. [4]		Ref.	[5] [5] EPJC 7	72,2014 [19] EPJA 49,116	
	Para. $\times 10^3$	w/o	W	w/o	W	Ref. [19]	BESIII
Fit I	α	136	94	(137,148)	(84,96)	202	$132.1 \pm 6.7 \pm 4.6$
Fit II	α	125	84	(125, 135)	(74,84)	190	$120.2 \pm 7.1 \pm 3.8$
	β	30	28	(29,33)	(24,28)	54	$29.5 \pm 8.0 \pm 5.3$

The fitted parameters are consistent with the predictions without incorporating crossed channel effects