

First Result From Fermilab Muon g-2 Experiment

Bingzhi Li, Shanghai Jiao Tong University On Behalf of the Muon g-2 Collaboration 2021/08/18

The Muon g-2 Experiment at Fermilab: Motivation

- The magnetic momentum of muon is $\mu = g \frac{e}{2m} \vec{S}$, with g=2 given by Dirac equation
- Additional effects from QED, EW and Hadronic move the g factor away from 2 (0.1%)

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{Had} + (a_{\mu}^{NP})$$

Muon g-2 of great interest because of rare combination of circumstances:

- Theorists can predict a_{μ} very well
- We can measure a_{μ} very well
- Results sensitive to new physics

The Muon g-2 Experiment at Fermilab: Motivation

BNL Result Phys Rev D73, 072003 (2006): $a_{\mu}^{\text{Exp}} = 116\,592\,089\,(63) \times 10^{-11}$ (540 ppb) 2020 Whitepaper Result arXiv:2006.04822v1: $a_{\mu}^{\text{SM}} = 116\,591\,810\,(43) \times 10^{-11}$ (370 ppb)

 $\Delta a_{\mu} = a_{\mu}^{\mathsf{Exp}} - a_{\mu}^{\mathsf{SM}} = (279 \ \pm \ 76) \ \times \ 10^{-11}$

Goal: Measure the muon anomalous magnetic moment a_{μ} to 140 ppb, a fourfold improvement over the 540 ppb precision of Brookhaven. Probe Standard Model (SM) predictions for new physics effects. (pbb: parts per billion)

Muon g-2: 33 Institutions, 7 Countries, ~200 Members

USA

- Boston
 Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington
- USA National Labs
 - Argonne
 - Brookhaven
 - Fermilab

* China

- Shanghai Jiao Tong University
- Germany
- Dresden
- Mainz
- Frascati
 - Flascal
 - Molise
 - Naples
 - Pisa
 - Roma Tor Vergata
 - Trieste
 - Udine
 - Korea

•

- CAPP/IBS
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

Overview of the Measurement Technique

$$\vec{\omega}_{\text{cyclotron}} = \frac{e}{\gamma m} \vec{B} \approx 2\pi \times 6.7 \text{ MHz}$$

$$\vec{\omega}_{\text{spin}} = g \frac{e}{2m} \vec{B} - (1 - \gamma) \frac{e}{\gamma m} \vec{B} \approx 2\pi \times 6.9 \text{ MHz}$$

$$\vec{\omega}_a \equiv \vec{\omega}_s - \vec{\omega}_c = \left(\frac{g - 2}{2}\right) \left[\frac{e}{m} \vec{B}\right]$$

$$\vec{\omega}_a = a_\mu \left[\frac{e}{m} \vec{B}\right] \approx 229 \text{ kHz}$$

- Muon anomalous precession frequency ω_a
- Uniform magnetic field B in terms of proton NMR frequency ω_p
- Want $a_{\mu} \Rightarrow$ need to measure ω_a and B
- Measure B using proton NMR: $\hbar \omega_p = 2\mu_p |B|$

$$a_{\mu} = \underbrace{\frac{\omega_a}{\tilde{\omega}'_p(T, T_r)}}_{\mu_e(H)} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

we measure other ratios known to 22 ppb precision or better in total 25ppb

Measurement of ω_p

Method: Pulsed Nuclear Magnetic Resonance

Fixed Probe

Fixed Probe Station:

- 378 fixed probes are located in72 azimuthal positions
- Monitor the field 24/7

Trolley:

- 17 probes (petroleum jelly sample)
- Mapping the field when beam is off

Calibration:

- Pure water sample NMR probe
- Calibrate the trolley probe

Measurement of ω_p : Trolley Map

- Trolley deployed every 2~3 days to map the magnetic field
- A single trip around the ring takes ~1 hr
- ~9000 x 17 probes worth of data per run
- The positions are determined using barcode

Quantity	Dipole		
$\langle \delta_i^X \rangle$	Corr. (ppb)	Unc. (ppb)	
Freq			
syst, fit	<1	10	
stat	0.0	0.1	
Motion	-15	18	
Position			
transverse	0	12	
azimuthal	0	4	
Temperature	0	15-27	
Multipoles	0	1	
Config			
garage	-5	22	
collimators	<1	<1	
ground loop	-2	0	
Total	-21	36–43	

Ref: Phys. Rev. A 103, 042208

Measurement of ω_p : Fixed Probe Interpolation

- When the beam is on, the trolley is parked in the garage
- The muon orbit field can not be measured directly
- Need to use fixed probes to track the field during data taking
- Interpolate between trolley runs using fixed probe data

Measurement of ω_p : Calibration

- Trolley and Fixed probes use petroleum jelly sample
- Plunging probe (PP) uses pure water sample
- Fast swap trolley and plunging probe at the same location to do calibration

$$\omega_p'(T_r) = \omega^{cp}(T) \left[1 + \delta^T \left(\mathbf{H}_2 \mathbf{O}, T_r - T \right) + \delta^b \left(\mathbf{H}_2 \mathbf{O}, T \right) + \delta^s + \delta^w + \delta^{\mathrm{RD}} + \delta^d \right]$$

Measurement of ω_p : Muon weighted / Field Transients

- Want the field actually experienced by muons, need to know the muon spatial distribution
- B_q : The electrostatic Quad are pulsed every 10ms and the motion of these plates causes a magnetic field perturbation
- B_k : The fast kicker pulse induces eddy currents in the surrounding metal and perturb the field

Data set	$\tilde{\omega}_p'(T_r)/2\pi$ (Hz)	Uncertainty (ppb)
Run-1a	61,791,871.2	115
Run-1b	61,791,937.8	127
Run-1c	61,791,845.4	125
Run-1d	61,792,003.4	108
	Average over all data s	sets
Field Measurements		56
ESQ Transient		92
Kicker Transient		37
Total		114

Ref: Phys. Rev. A **103**, 042208

Relative Field (ppb)

Measurement of ω_a

- Highest-energy e+ emitted preferentially along muon spin
- 24 calorimeters of 9×6 PbF₂ crystals detect e^+ from muon decay

 e^+ Signal from Muon Decay: $N_{\text{ideal}}(t) = N_0 \exp\left(-t/\gamma \tau_{\mu}\right) \left[1 + A\cos\left(\omega_a t + \phi\right)\right]$

*PbF₂ crystals are provided by SICCAS in collaboration with SJTU

Measurement of ω_a : Fitting

$$N = N_0 \Lambda N_{cbo} N_{2cbo} N_{vw} e^{-t/\tau} (1 - AA_{cbo} \cos(\omega_a t + \phi \phi_{cbo}))$$

$$\begin{split} N_{cbo} &= 1 - A_{1cbo}e^{-\frac{t}{\tau_{cbo}}\cos(\omega_{cbo}t + \phi_{1cbo})} \\ N_{2CBO}^* &= 1 - A_{2cbo}e^{-\frac{2t}{\tau_{cbo}}\cos(2\omega_{cbo}t + \phi_{2cbo})} \\ N_{vw} &= 1 - A_{vw}e^{-\frac{t}{\tau_{vw}}\cos(p \cdot \omega_{vw}t + \phi_{vw})} \\ A_{cbo} &= 1 - A_{Acbo}e^{-\frac{t}{\tau_{cbo}}\cos(\omega_{cbo}t + \phi_{Acbo})} \\ \phi_{cbo} &= 1 - A_{\phi cbo}e^{-\frac{t}{\tau_{cbo}}\cos(\omega_{cbo}t + \phi_{\phi cbo})} \\ \omega_{cbo} &= \omega_0(1 + Ae^{-\frac{t}{tau_{-}A}}/\omega_0t + Be^{-\frac{t}{tau_{-}B}}/\omega_0t) \\ \omega_{vw} &= \omega_c - 2\omega_y = \omega_c - 2\omega_{CBO}\sqrt{\frac{2\omega_c}{\omega_{CBO}} - 1} \\ \Lambda &= 1 - K_{loss}\int L(t')e^{t'/64.4}dt \end{split}$$

$$\chi^2 = \sum_{i=1}^{ndf} \left[\frac{N_{bin} - N_{fit}}{\sigma(N_{bin})}\right]^2$$

Measurement of ω_a : blinded analysis

- Software blind: analyzers' results come with random frequency offset $\omega_a \rightarrow \omega_a \pm 25$ ppm
- Hardware blind: ω_a clock detuned with true frequency (40 X) MHz; blinding factor in the range of 25 ppm
- 2 different algorithms to reconstruct positrons
- 6 different analysis groups with 4 different methods
- Final combination come from the 4 A-method due to statistically optimal

Independent Analyses

Run-1 dataset	1a	1b	1c	1d
$\omega_a^m/2\pi \ (s^{-1})$	229 080.957	229 081.274	229 081.134	229 081.123
$\Delta \left(\omega_a^m / 2\pi \right) (\mathrm{s}^{-1})$	0.277	0.235	0.189	0.155
Statistical uncertainty (ppb)	1207	1022	823	675
Gain changes (ppb)	12	9	9	5
Pileup (ppb)	39	42	35	31
CBO (ppb)	42	49	32	35
Time randomization (ppb)	15	12	9	7
Early-to-late effect (ppb)	21	21	22	10
Total systematic uncertainty (ppb)	64	70	54	49
Total uncertainty (ppb)	1209	1025	825	676

Ref: Phys. Rev. D 103, 072002

Measurement of ω_a : Beam Dynamic Correction

- C_e : Muons with p \neq 3.09 GeV/c are slightly affected by the radial electric field
- C_p : A small pitch angle (vertically) modulates $\beta \times \mathbf{B}$ term and the correction is required
- *C_{ml}*: Muon losses (ML) induce a (tiny) phase shift
- *C_{pa}*: Muon phase change due to 1) beam changing from early to late and 2) the measured phase depends on the decay coordinates

	Correction (ppb)	Uncertainty (ppb)
ω_a^m statistical		434
C _e	489	53
C_p	180	13
	-11	5
$C_{\rm pa}$	-158	75
C _{total}	499	93

Ref: Phys. Rev. Accel. Beams 24, 044002

Run I Results

 $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm) $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11}$ (0.35 ppm)

$$a_{\mu}(\text{Exp}) - a_{\mu}(\text{SM}) = (251 \pm 59) \times 10^{-11}$$

Significance: 4.2 σ

Quantity	Correction terms (ppb)	Uncertainty (ppb)
$\overline{\omega_a^m}$ (statistical)		434
ω_a^m (systematic)		56
C_e	489	53
C_p	180	13
$\dot{C_{ml}}$	-11	5
C_{pa}	-158	75
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu_{p}'(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_e		22
$g_e/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462

Ref: Phys. Rev. Lett. 126, 141801

Summary

- Our first result is consistent with the BNL measurement with improved precision
- The new averaged experiment result gives
 4.2σ discrepancy with the Standard Model prediction
- Run I is only 6% of the final data set
- We expect an improvement in precision by a factor of 2 from Run 2 and 3 and another factor of 2 from Run4 and Run5

