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The Muon g-2 Experiment at Fermilab: Motivation

Muon g-2 of great interest because of rare combination of circumstances:
• Theorists can predict 𝑎𝑎𝜇𝜇 very well 
• We can measure 𝑎𝑎𝜇𝜇 very well 
• Results sensitive to new physics

• The magnetic momentum of muon is 𝜇𝜇 = 𝑔𝑔 𝑒𝑒
2𝑚𝑚

𝑆𝑆, 

with g=2 given by Dirac equation

• Additional effects from QED, EW and Hadronic 

move the g factor away from 2 (0.1%)

𝑎𝑎𝜇𝜇 = 𝑔𝑔−2
2

= 𝑎𝑎𝜇𝜇
𝑄𝑄𝑄𝑄𝑄𝑄 + 𝑎𝑎𝜇𝜇𝑄𝑄𝐸𝐸 + 𝑎𝑎𝜇𝜇𝐻𝐻𝐻𝐻𝐻𝐻 + (𝑎𝑎𝜇𝜇𝑁𝑁𝑁𝑁)
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The Muon g-2 Experiment at Fermilab: Motivation

Goal: Measure the muon anomalous magnetic moment 𝑎𝑎𝜇𝜇 to 140 ppb, a fourfold 
improvement over the 540 ppb precision of Brookhaven. Probe Standard Model (SM) 
predictions for new physics effects. (pbb: parts per billion)



Physics Week in Elba, Italy 2019

• USA
– Boston
– Cornell
– Illinois 
– James Madison
– Kentucky 
– Massachusetts
– Michigan
– Michigan State
– Mississippi
– North Central
– Northern Illinois 
– Regis
– Virginia
– Washington

• USA National Labs
– Argonne
– Brookhaven
– Fermilab

• China
– Shanghai Jiao Tong University

• Germany
– Dresden
– Mainz

• Italy
– Frascati 
– Molise
– Naples 
– Pisa
– Roma Tor Vergata
– Trieste
– Udine

• Korea
– CAPP/IBS
– KAIST

• Russia
– Budker/Novosibirsk
– JINR Dubna

• United Kingdom
– Lancaster/Cockcroft
– Liverpool
– Manchester
– University College London

Muon g-2: 33 Institutions,  7 Countries, ~200 Members
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Overview of the Measurement Technique

• Muon anomalous precession frequency 𝜔𝜔𝐻𝐻
• Uniform magnetic field B in terms of proton NMR frequency 𝜔𝜔𝑝𝑝

• Want 𝑎𝑎𝜇𝜇 ⇒ need to measure 𝜔𝜔𝐻𝐻 and B
• Measure B using proton NMR: ℏ𝜔𝜔𝑝𝑝 = 2𝜇𝜇𝑝𝑝|𝐵𝐵|

other ratios known to 22 ppb precision or better
in total 25ppb

Uniform Field:
Shim to ±1ppm

𝑔𝑔 = 2
𝜔𝜔𝐻𝐻 = 0

•

𝑔𝑔 > 2
𝜔𝜔𝐻𝐻 = 𝑎𝑎𝜇𝜇

𝑒𝑒
𝑚𝑚
𝐵𝐵

momentum
spin

we measure
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Measurement of 𝜔𝜔𝑝𝑝

Fixed Probe 
Station

Trolley

Calibration

Method: Pulsed Nuclear Magnetic Resonance

Free induction decay (FID)

Fixed Probe

Trolley

Fixed Probe Station:
• 378 fixed probes are located in 

72 azimuthal positions
• Monitor the field 24/7

Trolley:
• 17 probes (petroleum jelly sample)
• Mapping the field when beam is off

Calibration:
• Pure water sample NMR probe
• Calibrate the trolley probe
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Measurement of 𝜔𝜔𝑝𝑝: Trolley Map

• Trolley deployed every 2~3 days to map the magnetic field 

• A single trip around the ring takes ~1 hr

• ~9000 x 17 probes worth of data per run 

• The positions are determined using barcode

Ref: Phys. Rev. A 103, 042208
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• When the beam is on, the trolley is parked in the garage
• The muon orbit field can not be measured directly
• Need to use fixed probes to track the field during data taking
• Interpolate between trolley runs using fixed probe data

Measurement of 𝜔𝜔𝑝𝑝: Fixed Probe Interpolation

Measurement of 𝜔𝜔𝑝𝑝: Calibration
• Trolley and Fixed probes use petroleum jelly sample 
• Plunging probe (PP) uses pure water sample
• Fast swap trolley and plunging probe at the same location to do calibration

probe

ca
lib

ra
tio

n 
[H

z]
 

SJTU results
UMASS results
𝝁𝝁 = 𝟔𝟔.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓
𝝈𝝈 = 𝟖𝟖.𝟗𝟗𝟓𝟓𝟓𝟓𝟓𝟓
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Measurement of 𝜔𝜔𝑝𝑝: Muon weighted / Field Transients

Quad-induced transient Kicker-induced transient

Ref: Phys. Rev. A 103, 042208

• Want the field actually experienced by muons, need to know 

the muon spatial distribution 

• 𝑩𝑩𝒒𝒒: The electrostatic Quad are pulsed every 10ms and the 

motion of these plates causes a magnetic field perturbation 

• 𝑩𝑩𝒌𝒌: The fast kicker pulse induces eddy currents in the 

surrounding metal and perturb the field
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Measurement of 𝜔𝜔𝐻𝐻

• Highest-energy e+ emitted preferentially along muon spin
• 24 calorimeters of 9×6 PbF2 crystals detect 𝑒𝑒+ from muon decay

*PbF2 crystals are provided by SICCAS 
in collaboration with SJTU 
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Measurement of 𝜔𝜔𝐻𝐻: Fitting Detector effect: Pileup

Detector effect: Gain

Beam Dynamic effect: Coherent 
Betatron Oscillations (CBO)

energy spectrum

raw 1d dataset
pileup correction
corrected spectrum
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Measurement of 𝜔𝜔𝐻𝐻: blinded analysis

• Software blind: analyzers’ results come with random 

frequency offset 𝜔𝜔𝐻𝐻 → 𝜔𝜔𝐻𝐻±25 ppm

• Hardware blind: 𝜔𝜔𝐻𝐻 clock detuned with true frequency 

(40 − X) MHz; blinding factor in the range of 25 ppm

• 2 different algorithms to reconstruct positrons

• 6 different analysis groups with 4 different methods

• Final combination come from the 4 A-method due to 

statistically optimal 

Ref: Phys. Rev. D 103, 072002
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Measurement of 𝜔𝜔𝐻𝐻: Beam Dynamic Correction

𝐶𝐶𝑚𝑚𝑚𝑚: 𝐶𝐶𝑝𝑝𝐻𝐻:
Ref: Phys. Rev. Accel. Beams 24, 044002

• 𝑪𝑪𝒆𝒆: Muons with p ≠ 3.09 GeV/c are slightly 

affected by the radial electric field

• 𝑪𝑪𝟓𝟓: A small pitch angle (vertically) modulates 

𝛽𝛽×𝐁𝐁 term and the correction is required

• 𝑪𝑪𝒎𝒎𝒎𝒎: Muon losses (ML) induce a (tiny) phase shift

• 𝑪𝑪𝟓𝟓𝒑𝒑: Muon phase change due to 1) beam 

changing from early to late and 2) the measured 

phase depends on the decay coordinates 
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Field Transients

Beam Dynamics
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Run1 Results

Ref: Phys. Rev. Lett. 126, 141801
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Summary

• Our first result is consistent with the BNL 

measurement with improved precision

• The new averaged experiment result gives 

4.2σ discrepancy with the Standard Model 

prediction

• Run 1 is only 6% of the final data set 

• We expect an improvement in precision by a 

factor of 2 from Run 2 and 3 and another 

factor of 2 from Run4 and Run5 
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Backup: 𝜔𝜔𝐻𝐻Fitting

residual
N

 / 149.2ns

5par fitting full fitting

FFT of residual: 1d dataset

f [MHz]

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ± 𝑓𝑓𝐻𝐻
𝑓𝑓𝐻𝐻
𝑓𝑓𝑉𝑉𝐸𝐸
5𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐹𝐹𝐹𝐹𝐹𝐹

Chi2/ndf=0.992 Chi2/ndf=8.168 

1d dataset 1d dataset
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