Geometry Management System in OSCAR

He Li on behalf of STCF Software Group

Qingdao Shandong August,18,2021

Outline

- STCF detectors
- Geometry management requirements
- Design of Geometry Management System(GMS)
- Test and performance
- Summary and outlook

STCF Detectors

High Intensity Electron Positron Accelerator ◆ E_{cm}=2-7 GeV

- Lum = $(0.5 \sim 1.0) \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Research for physics goals tau-charm energy region.

New challenge for the detectors:

- Large geometrical acceptance of 4π
- Hige detection efficiency for low p_t tracks
- High momentum resolution and PID capabilities for high p_t tracks
- High efficiency and resolution for photons
- Stability and reliability

General purpose detector:

- Vertex Detector (VTD)
- Main Drift Chamber (MDC)
- Particle IDentification(RICH&DTOF)
- EM Calorimeter (EMC)
- Muon Detector (MUD)

Geometry Management requirements

Application scenario in detector simulation:

- Complicated geometry descriptions
- Designers from different institutions
- Ambiguous detector designs and versions
- ✤ Detector geometry is needed by simulation, reconstruction, analysis, visualization...

(a) μ RWell design option.

(b) ISD design option.

Geometry management requirements:

- Provide a consistent geometry description for offline applications
- Provide a unified and user-friendly software environment for detector designers and scientists
- Support flexible geometry combinations of subdetectors and easy switching among different designs

Software environment

OSCAR: Offline Software of Super Tau-Charm Facility

- **ExLibs:** include frequently used third-party software and tools
- **SNiPER:** the framework to provide core functionalities and common services.
- Offline: all software specific to STCF

Detector description toolkit

DD4hep: a general Detector Description tool for high energy physics, from LHCb

- The geometries of different sub-detectors can be independently constructed and easily assembled into a full detector.
- Supports geometry conversion to Geant4 geometry objects.
- Provides a sophisticated 3D visualization plug-in to conveniently display and check detector designs.
- Offers full technical support and maintenance from the developers.

Detector parameters repository

Tree-like hierarchy structure

STCF.xml ECAL VTD v02.xml v02.xml v01.xml Materials.xml Elements.xml

Detector components description:

- Elements and materials
- Volume parameters
- Display, readout setup
- Fields...

Design of the prarameters repository

- Parameters are stored in XML files, human readable.
- Elements and materials are shared.
- Support multiple designs and flexible configuration of the geometry.
- Gitlab for version control based on apache

Geometry model construction

Detector constructor palette:

- **Specialized** *C*++ codes
- Declare the detector name
- Parse detector parameters
- Placement of the volumes

```
xml_det_t x_det = e;
Layering layering(x_det);
xml_comp_t staves = x_det.staves();
xml_dim_t dim = x_det.dimensions();
DetElement sdet(det_name, x_det.id());
Volume motherVol = theDetector.pickMotherVolume(sdet);
```

```
PolyhedraRegular polyhedra(numSides, rmin, rmax, detZ);
Volume envelopeVol(det_name, polyhedra, air);
```

```
for (xml_coll_t c(x_det, _U(layer)); c; ++c) {
    xml_comp_t x_layer = c;
    int n_repeat = x_layer.repeat();
    const Layer* lay = layering.layer(layer_num - 1);
    for (int j = 0; j < n_repeat; j++) {
        string layer_name = _toString(layer_num, "layer%d");
        double layer_thickness = lay->thickness();
        DetElement layer(stave, layer_name, layer_num);
        ...}
}
```

```
DECLARE_DETELEMENT(GenericCalBarrel_o1_v01, create_detector)
```


Geometry construction encapsulated in SNIPER-Type modules

- detector constructors read and parse the geometry parameters.
- construct the generic detector description model.
- the generic detector description model is converted to G4 geometry.

Workflow of GMS

STCF detector Geometry

- Easy switch and assembly of different sub-detectors
- Single sub-detector scenario
- Full detector scenario

Workflow of GMS in simulation

- Detector model was initialized by DetGeoConsSvc
- FullSim: SNiPER-Type algorithms based on Geant4 simulation
- After simulation, detector geometry is saved into TGeo in ROOT for further usage of reconstruction, visualization

Test and performance of GMS

Workflow of GMS

Energy and spatial resolutions versus incident energy under different crystal sizes Basic performace

With the GMS and FullSim:

- Evaluate and optimize the detector design
- Different CsI crystal unit sizes are tested

Table 1. Time consumption of the detector geometry construction.

Steps	Geometry construction	Geometry conversion	Total
Time consumption	1.12 s	0.16 s	1.28 s

Table 2. Comparison of XML and ROOT file sizes.

File	XML	ROOT
Size	100 KB	4 MB

Summary

- GMS was developed in OSCAR to provide a consistent geometry description for different offline applications
- A unified and user-friendly software environment for detector designers with several SNiPER-Type packages.
- Detector simulations with GMS are performed to help optimization of the detector.
- DDXML service is developed to extract geometric information for Reconstruction and Visualization.

Thank a lot !