

Search for invisible decays and J/ψ weak decays at BESIII

在BESIII实验中寻找不可见衰变以及J/ψ稀有衰变

Ziyuan Li 李紫源

(on behalf of the BESIII Collaboration)

Sun Yat-sen University 中山大学

第十三届全国粒子物理学术会议

13th National Particle Physics Conference of the High Energy Physics Branch of CAS Aug 16-19, 2021, Online

Outline

- Introduction of BEPCII & BESIII
- Invisible decays
 - Search for $J/\psi \rightarrow \gamma + invisible$
 - Search for $\eta^{(\prime)}$ invisible decays in $J/\psi \to \phi \eta^{(\prime)}$
 - Search for ω and ϕ invisible decays with $J/\psi \to V(\omega, \phi)\eta$
- J/ψ weak decays
 - Research status
 - $-J/\psi \rightarrow D^-e^+\nu_e$ +c.c.
- Summary

BEPCII and **BESIII**

Beijing Electron Positron Collider II

Charm Factory

BESIII Detector

MDC: p 0.5%@ 1GeV/c

dE/dx: 6%

EMC: CsI (TI) 2.5% (5.0%)

barrel (endcap) @ 1GeV

TOF: $\sigma T = 68(65)$ ps barrel (endcap)

MUC: RPC 9 (8) layers barrel (endcap)

Charmonium data at BESIII

Invisible decays

- Many evidences for the existence of dark matter are observed in astronomy. But no evidence from the collider experiments.
- Search for invisible decays at colliders is one way to search for dark matter.

HESS, HAWC, VERITAS, MAGIC, IceCube, ... PAMELA, FERMI, CALET, DAMPE, AMS, ... $\chi + \chi \rightarrow e^+, \bar{p}, \gamma, ...$ CDEX **CDMS** $p, \overline{p}, e^-, e^+, \gamma$ **CRESST** Scattering DARKSIDE >> **DEAP** LUX **PandaX** $p, \overline{p}, e^-, e^+, \gamma$ **PICO XENON** ... $+\chi + \chi \leftarrow p + p$ **BESIII, Belle, LHC**

Annihilation

Search for $J/\psi \rightarrow \gamma + invisible$: General

• A series of supersymmetric models, including Next-to-Minimal Supersymmetric Model, predict a CP-odd pseudoscalar Higgs(A^0). The A^0 can be produced in quarkonium radiative decay:

$$rac{B(V
ightarrow \gamma A^0)}{B(V
ightarrow \mu^+\mu^-)} = rac{G_F m_q^2 g_q^2 C_{QCD}}{2\pilpha} (1-rac{m_{A^0}^2}{m_V^2})$$

- g_q is the Yukawa coupling of the A^0 field to the quark-pair
- $-g_c=\cos heta_A$ /tan eta for the charm quark
- $-g_b = \cos \theta_A \tan \beta$ for the bottom quark
- $\tan \beta$ is the usual ratio of vacuum expectation values
- θ_A is the Higgs mixing angle
- A^0 can decay to two neutralinos, which is invisible to detector

8/18/2021 HEP-CPS 2021

Phys. Rev. Lett 122 no.1 011801(2019)

Search for $J/\psi \rightarrow \gamma + invisible$: Analysis

Phys. Rev. D 101, 112005 (2020)

- $4.481 \times 10^8 \ \psi(3686) \rightarrow \pi^+ \pi^- J/\psi$ is used to get J/ψ sample
- Fit the recoiling mass of $\pi^+\pi^-$, get 8.848×10^7 J/ψ
- Search signal on E_{ν}^{*} in J/ψ rest frame in [1.25,1.65] GeV
 - Huge background from $\gamma K_L K_L$
 - Obvious peak from $\gamma\eta$, $\gamma\pi^0$
- No significant singal found
 - Signal: signal MC shape
 - Two peak bkg : fixed Crystal Ball
 - Non-peak bkg : exponential function
 - Scan m(invisible) from $0 \sim 1.2 \text{GeV/c}^2$

Search for $J/\psi \rightarrow \gamma + invisible : Result$

- Modified frequentist method is used to calculate upper limits @ 90% CL
 - The UL for a zero mass of the invisible particle is improved by a factor 6.2 compared to CLEO-c's
 - Obtain better sensitivity in the range $\tan \beta \le 0.6$ compared to the Belle's

$$\frac{B(V \to \gamma A^0)}{B(V \to \mu^+ \mu^-)} = \frac{G_F m_q^2 g_q^2 C_{QCD}}{2\pi \alpha} (1 - \frac{m_{A^0}^2}{m_V^2})$$

$$g_c = \cos \theta_A / \tan \beta, g_b = \cos \theta_A \tan \beta$$

Search for $\eta^{(\prime)}$ invisible decays

Phys. Rev. D 87, 012009 (2013)

- 225.3×10⁶ $J/\psi \rightarrow \phi \eta^{(\prime)}$ and $\phi \rightarrow K^+K^-$ is used to get $\eta^{(\prime)}$ sample
- No charged tracks besides those of the $\phi \to K^+K^-$
- No obvious signal is observed, upper limits is set
 - $Br(\eta \rightarrow invisible)/Br(\eta \rightarrow \gamma\gamma) < 2.58 \times 10^{-4} @ 90\% C.L.$
 - $Br(\eta' \rightarrow invisible)/Br(\eta' \rightarrow \gamma\gamma) < 2.39 \times 10^{-2} @ 90\% C.L.$
 - $Br(η → invisible) < 1.01 × 10^{-4} @ 90% C.L.$
 - Br(η' → invisible) < 5.21×10⁻⁴ @ 90% C.L.
- Improved PDG values

ratio to cancel uncerntainty

8/18/2021

HEP-CPS 2021

Search for ω and ϕ invisible decays

Phys. Rev. D 98, 032001 (2018)

- $1310.6 \times 10^6 J/\psi \rightarrow V(\omega, \phi)\eta$ and $\eta \rightarrow \pi^+\pi^-\pi^0$ is used to get V sample
- No obvious signal is observed, upper limits is set
 - $Br(ω → invisible)/Br(ω → π^+π^-π^0) < 8.1 × 10^{-5} @ 90% C.L.$
 - $-Br(\phi \to invisible)/Br(\phi \to K^+K^-) < 3.4 \times 10^{-4} @ 90\% C.L.$
 - $Br(ω → invisible) < 7.3 × 10^{-5} @ 90% C.L.$
 - $-Br(\phi \to invisible) < 1.7 \times 10^{-4} @ 90\% C.L.$

J/ψ weak decays

- Weak decays, due to the smallness of the strength of the weak interaction, are rare processes
- The decay rate is $\propto G_F^5 \ m_c^5$, which is at the order of 10^{-11}

EPJC,54:107 (2008); AHEP,2013:706543 (2013); AHEP,2016:5071671(2016); PRD,15:1958 (1977)

The inclusive weak decay rate of J/ ψ : $Br \approx \frac{2/\tau_D}{\Gamma_{J/\psi}} \approx 10^{-8}$

PRD, 60:014011 (1999); PLB,345:483 (1995); PRD,15:1958 (1977)

- New Physics model predict that Br can be enhanced to $10^{-8} \sim 10^{-6}$
- Study of J/ψ weak decays
 - Provide a further accurate examination of the mechanism
 - Probe new physics beyond the standard model

Research status

- J/ψ weak decays at BESIII
 - Weak semi-leptonic decay
 - Hadronic decay
 - FCNC weak decay

Hadonic decay

	$J/\psi \rightarrow D_s^- \rho^+$	$J/\psi ext{ -> } ar{\mathcal{D}}^0 ar{\mathcal{K}}^{*0}$
Exp.	BESIII	BESIII
$\overline{N_{J/\psi}}$	225.3×10^{6}	225.3×10^{6}
B(90%)	$< 13 \times 10^{-6}$	$< 2.5 \times 10^{-6}$

PRD 89, 071101 (2014)

Weak semi-leptonic decay

	J/ψ -> $D_s^-e^+ u_e$	J/ψ -> $D_s^{*-}e^+ u_e$	$\int J/\psi -> ar{\cal D}^0 e^+ e^-$	J/ψ -> $D^-e^+ u_e$
Exp.	BESIII	BESIII	BESIII	BESIII
$\overline{N_{J/\psi}}$	225.3×10^{6}	225.3×10^{6}	1310.6×10^6	10.1×10^9
B(90%)	$< 1.3 \times 10^{-6}$	$< 1.8 \times 10^{-6}$	$< 8.5 \times 10^{-8}$	$< 7.1 \times 10^{-8}$

References: PLB 639, 418 (2006); PRD 90,112014 (2014); JHEP 06, 157 (2021).

$J/\psi \rightarrow D^- e^+ \nu_e$: Strategy

- 10 Billion J/ψ is used
- D^- is reconstructed via $K^+\pi^-\pi^-$
- FOM = $\frac{s}{\sqrt{s+b}}$ is used to optimized cut
- Semi-blind analysis is used to avoid possible bias

$J/\psi \rightarrow D^-e^+\nu_e$: Analysis

- $U_{miss} = E_{miss} P_{miss}$ is used to find signal
 - Obviously signal events would form a peak at $U_{miss} = 0$
- Fit to the U_{miss} of signal MC to get a 3σ region as signal region
- Background
 - Gamma conversion and particle misidentification
 - No peaking background
- No excess of events is observed

$J/\psi \rightarrow D^-e^+\nu_e$: Result

Bayesian approach is used to calculate upper limits @ 90% CL

$$-Br(J/\psi \to D^-e^+\nu_e + c.c.) < 7.1 \times 10^{-8}$$

- Improves limit by a factor of 170
- Most sensitive search for this decay
- Compatible with the SM predictions

$$\mathcal{L}(\mathcal{B}) \propto \int_0^1 exp[-\frac{(\epsilon \mathcal{B}/\hat{\epsilon} - \hat{\mathcal{B}})^2}{2\sigma_{\mathcal{B}}^2}] \ exp[-\frac{(\epsilon - \hat{\epsilon})^2}{2\sigma_{\epsilon}^2}] \ d\epsilon$$

 $\widehat{\mathcal{B}}$: mean value of BF of Fit Line

 $\sigma_{\mathcal{B}}$: statistical error of BF of Fit Line

 $\hat{\epsilon}$: nominal efficiency

 $\sigma_{\epsilon} = \Delta_{sys} \cdot \epsilon$: error of efficiency

Puts a stringent constraint on the parameter spaces for different new physics models

Sources	Relative uncertainties	
Tracking	4.0	
Particle ID	4.0	
Signal MC model	3.0	
$E_{\gamma}^{ m tot}$ requirement	2.1	
E/p requirement	0.3	
$ ec{p}_{ ext{miss}} $ requirement	0.3	
BF of the $D^- \to K^+ \pi^- \pi^-$ decay	1.7	
Number of J/ψ events	0.5	
Total	7.0	

Summary

- Several searches about invisible decays and J/ψ weak decays have been review.
- More data in BESIII. Many ongoing invisible searches and weak decays searches. More exciting results in future.
 - $-J/\psi \rightarrow invisible, D^+ \rightarrow \pi^+ + invisible$
 - $-\Lambda \rightarrow invisible, \Lambda_c^+ \rightarrow p + invisible$
 - $-J/\psi \rightarrow D_s^- e^+ \nu_e$, $D^- u^+ \nu_u$
 - $-I/\psi \rightarrow \overline{D}^{0}\pi^{0}, \overline{D}^{0}\rho^{0}, \overline{D}^{0}\eta, D^{-}\pi^{+}, D^{-}\rho^{+}$
 - $-\psi'$ weak decay

_ ...

Thank you!