

Baryon/Lepton number violation searches at BESIII

Xiaoshuai Qin

(On behalf of BESIII Collaboration)

Shandong University

中国物理学会高能物理分会

第十三届全国粒子物理学术会议

16-19 Aug. 2021

Outline

- Introduction of BEPCII and BESIII
- Charged lepton flavor violating decays
 - Search for $J/\psi \to e^{\pm}\tau^{\mp}$
- Lepton number violating(LNV)/Baryon number violating (BNV) decays
 - $J/\psi \to \Lambda_c^+ e^-$
 - $D^+ \to \overline{\Lambda}(\overline{\Sigma}{}^0)e^+, D^+ \to \Lambda(\Sigma^0)e^+$
 - $\Sigma^- \to p e^- e^-, \Sigma^- \to \Sigma^+ X$
 - $\Lambda \overline{\Lambda}$ oscillation via $J/\psi \to pK^-\overline{\Lambda}$
- Summary

BESIII experiment

Beam energy: 1.0-2.35GeV, E_{cms} now up to ~4.95 GeV Energy spread: 5.16x10⁻⁴ Design luminosity: 1x10³³/cm² /s @ ψ (3770) Achieved luminosity: 1.01x10³³/cm²/s (2016) Crossing angle: 11mrad

Nucl. Instr. Meth. A614, 345(2010)

Charged Lepton Flavor Violation

- SM: $B(\mu \rightarrow e\gamma) \sim O(10^{-54})$
- Many physics models beyond the SM could allow CLFV processes to take place, such as supersymmetry, the two Higgs doublet model , and models including a fourth generation of quarks and leptons
- Activities in τ -e conversion, μ -e conversion.
 - MEG: $B(\mu \to \gamma e) < 4.2 \times 10^{-13}$
 - BaBar: $B(\tau \rightarrow \gamma e) < 3.3 \times 10^{-8}$
 - Future: Eg. COMET: single event sensitivity aim: 10⁻¹⁷
- Many experiments searched for CLFV processes in the decays of
 - pseudoscalar mesons, vector mesons, gauge bosons, and the Higgs boson, e.g., pions, kaons, B mesons, bottomonium states, Z⁰, and Higgs.
- Some predictions on CLFV in the charmonium states constrain $B(J/\psi \rightarrow e\mu)$ to the order of 10^{-13} , while $B(J/\psi \rightarrow e\tau / \mu\tau)$ to 10^{-9} :
 - model-independent methods
 - unparticle physics
 - minimal supersymmetric model with gauged baryon number and lepton number

PRD103(2021)112007

- Based on 10 billion J/ψ data set:
 1310.6M collected @2009+2012 (sample I),
 8774.01M collected @2017-2019(sample II).
- $J/\psi \rightarrow e\tau$, $\tau \rightarrow \pi \pi^0 \nu$.
- Select one electron and one charged pion.
- At least two photon showers and one π^0 .
- Two-body-decay:
- One undetected neutrino with missing energy $E_{\text{miss}} > 0.43 GeV$.
- Blind analysis to avoid possible bias.

10

8

6

2

Events /(10 MeV)

data
 background
 signal MC sample

-0.2

Sample I

0.2

Search for $J/\psi \rightarrow e^{\pm} \tau^{\mp}$

Sample II

0.2

0

U_{miss} (GeV)

--- data background signal MC sample

15

10

5

0

-0.2

Events /(10 MeV)

 $U_{\rm miss} = E_{\rm miss} - c |\vec{P}_{\rm miss}|$

PRD103(2021)112007

- $BR(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L.
- This result improves the previous published limits by two orders of magnitude and comparable with the theoretical predictions.
- $BR(J/\psi \to e\mu) < 1.6 \times 10^{-7} @ 90\%$ C.L. with 225M J/ψ events. *PRD87(2013)112007*

Results	Sample I		Sample II
N _{obs}	13		69
$N_{\rm bkg}^{\rm exp}$	6.9		63.6
$\sigma_{\rm bkg}^{\rm exp}$	1.9		13.2
$\epsilon_{\rm eff}^{\rm mc}$	20.24%		19.37%
$\sigma_{\rm eff}^{\rm mc}$	0.79%		0.79%
BF (90% C.L)	$7.5 imes 10^{-8}$	

0

U_{miss} (GeV)

Sources	Sample I	Sample II
Number of J/ψ	0.5%	0.4%
Quoted BF*	0.4%	0.4%
MC model	0.6%	
Pion PID*	1.0%	1.0%
Pion tracking*	1.0%	1.0%
Electron PID	0.4%	0.9%
Electron tracking*	0.1%	0.1%
Photon detection*	1.0%	1.0%
π^0 reconstruction*	1.0%	1.0%
P_e and M_{e} recoil requirements	3.0%	3.3%
$E_{\rm miss}$ requirement	1.0%	0.8%
Total uncertainty	3.9%	4.1%

A.D.Sakharov, Pisma Zh.Eksp.Teor.Fiz.5,32 (1967)

- Asymmetry of matter and anti-matter: big problem in the universe evolution.
- Sakharov three conditions of matter asymmetry after big bang:
 - Baryon Number violation (BNV)
 - Charge (C) and Charge-Parity (CP) violation
 - Thermal nonequilibrium.
- C and CP violation: precisely tested by theory and experiments in decades, however not enough to address the asymmetry of matter and anti-matter in the universe.

Baryon number violation: Why BNV?

- BNV: even a small amount would have major consequences on the universe and its evolution, as many theories have suggested.
- Many theoretical models where BNV is allowed. For example, in the Grand Unified Theory, proton can decay into several modes through leptoquarks, such as p → e⁺π⁰. Such mechanism simultaneously breaks BN and LN while conserving Δ(B − L).
 - Leptoquarks are hypothetical particles carrying both baryon number (B) and lepton number (L), expected to exist in various extensions of the SM and GUT.

 $D^+ \to \overline{\Lambda}(\overline{\Sigma}{}^0)e^+, D^+ \to \Lambda(\Sigma^0)e^+$

PRD101(2020) 031102(R)

Processes	B _{90% C.L.}	Experiment & reference
$D^0 \rightarrow pe^-$	1×10^{-5}	CLEO-c
$D^0 \rightarrow \bar{p}e^+$	1.1×10 ⁻⁵	[PRD79(2009)097101]
$B^0 \to \Lambda_c^+ \mu^-(e^-)$	$1.8(5.2) \times 10^{-6}$	
$B^- \to \Lambda \mu^-(e^-)$	$6.2(8.1) \times 10^{-8}$	BABAR [PRD83(2011)091101(R)]
$B^- \to \overline{\Lambda} \mu^-(e^-)$	$6.1(3.2) \times 10^{-8}$	

FIG. 1. Feynman diagrams for the BNV decays of *D* mesons with $\Delta(B - L)$ equal to 0 [(a) and (b)] and 2 [(c) and (d)].

- Dimension six operators: $\Delta(B-L)=0$
- Dimension seven operators: $\Delta(B-L)=2$

 $D^+ \to \overline{\Lambda}(\overline{\Sigma}{}^0)e^+, D^+ \to \Lambda(\Sigma^0)e^+$

PRD101(2020) 031102(R)

- 2.91 fb⁻¹ ψ (3770) data
- $\sim 8.3M D^+D^-$ pair
- Selection and signal extraction:

 $\Delta E = E_D - E_{\text{beam}}$ $M_{\text{BC}} = \sqrt{E_{\text{beam}}^2 - p_D^2}$

• UL estimated via scanning likelihood ratio

Source	$\bar{\Lambda}e^+$	Λe^+	$\bar{\Sigma}^0 e^+$	$\Sigma^0 e^+$
$N_{D^+D^-}^{\text{tot}}$	0.9	0.9	0.9	0.9
ΔE cut	0.6	0.6	0.9	0.9
$\Lambda(\bar{\Lambda})$ reconstruction	1.5	1.5	1.5	1.5
$\Sigma^{0}(\bar{\Sigma}^{0})$ mass window			< 0.1	< 0.1
e^+ tracking	0.3	0.3	0.3	0.3
e^+ PID	1.0	1.0	1.0	1.0
γ reconstruction			1.0	1.0
MC statistics	0.3	0.4	0.4	0.4
No extra (anti-)proton	0.3	0.3	0.3	0.3
Photon conversion veto	0.5	0.5	0.5	0.5
Quoted BF(s)	0.8	0.8	0.9	0.9
Total	2.4	2.4	2.7	2.7

 $\Sigma^- \to p e^- e^-, \Sigma^- \to \Sigma^+ X$

- 1.31 billion J/ψ events
- $J/\psi \rightarrow \overline{\Sigma}(1385)^+ \Sigma^-$, $\overline{\Sigma}(1385)^+ \rightarrow \overline{\Lambda}\pi^+$
- Double tag techinique:

$$\mathcal{B}_{\rm sig} = \frac{N_{\rm DT}^{\rm obs}}{N_{\rm ST}^{\rm obs} \epsilon_{\rm DT} / \epsilon_{\rm ST}}$$

- X particles not detected
- Use MC of $\Sigma^- \to \Sigma^+ e^- e^-$ to estimate efficiency
- $B(\Sigma^- \to pe^-e^-) < 6.7 \times 10^{-5}$
- $B(\Sigma^- \to \Sigma^+ X) < 1.2 \times 10^{-4}$

 $J/\psi \rightarrow \Lambda_c^+ e^-$

- Virtual leptoquarks mediate the decay.
- First quarkonium BNV search.
- 1.3 billion J/ψ
- First search of $J/\psi \to \Lambda_c^+ e^- \to (pK^-\pi^+)e^-$
- Check $M_{pK\pi}$ distribution, no signal events in the signal region
- Total systematic uncertainty (~7%)
- Upper limit is obtained by utilizing a frequentist method with unbounded profile likelihood treatment of systematic uncertainties.
- $BR(J/\psi \to \Lambda_c^+ e^- + c.c) < 6.9 \times 10^{-8} @ 90\% \text{ C.L.}$

PRD99(2019)072006

Processes	B _{90% C.L.}	Experiment & reference						
$D^0 \rightarrow pe^-$	1×10^{-5}	CLEO-c	 Sensitivi 	itivity based on 10 ¹⁰ J/ ψ and 3 × 10 ⁹ ψ (2S) = π^{\pm} or K^{\pm}				
$D^0 \rightarrow \bar{p}e^+$	1.1×10 ⁻⁵	[PRD79(2009)097101]	$M^{\pm} = \pi$					
$B^0 \to \Lambda_c^+ \mu^-(e^-)$	1.8 (5.2)×10 ⁻⁶			Frontiers of Physic	s 12, 121301	(2017	7)	
$B^- \rightarrow \Lambda \mu^-(e^-)$	6.2 (8.1)×10 ⁻⁸	BABAR [PRD83(2011)091101(R)]		Current data	Sensitivity			
$B^- \to \overline{\Lambda} \mu^-(e^-)$	6.1 (3.2)×10 ⁻⁸		Decay mode	$\mathcal{B} (\times 10^{-6}) (90\% \text{ C.L.})$	$\mathcal{B}(\times 10^{-6})$	ΔL	ΔB	
$\Lambda \to K^+ e^-(\mu^-)$	2 (3)×10 ⁻⁶	CLAS [PRD92(2015)072002]	$\Lambda \to M^+ l^-$	$< 0.4 – 3.0 \ [68]$	< 0.1	+1	-1	
$\Lambda \to K^- e^+(\mu^+)$	2 (3)×10 ⁻⁶		$\Lambda \to M^- l^+$	$< 0.4 – 3.0 \ [68]$	< 0.1	-1	-1	
$\Lambda \to \pi^+ e^-(\mu^-)$	6 (6)×10 ⁻⁷		$\Lambda \to K_S \nu$	< 20 [68]	< 0.6	+1	-1	
$\Lambda \to \pi^- e^+(\mu^+)$	4 (6)×10 ⁻⁷		$\Sigma^+ \to K_S l^+$	CLAS [PRD92(2015)07200	02] < 0.2	-1	-1	
$\Lambda \to \bar{p}\pi^+$	9×10 ⁻⁷		$\Sigma^- \to K_S l^-$	_	< 1.0	+1	-1	
$\Lambda \to K^0_S \nu$	2×10-5		$\Xi^- \rightarrow K_S l^-$	—	< 0.2	+1	-1	
$D^+ \rightarrow \Lambda(\Sigma^0) e^+$	1.1 (1.7)×10 ⁻⁶	BESIII [PRD101(2020)031102(R)]	$\Xi^0 \to M^+ l^-$	_	< 0.1	+1	-1	
$D^+ \to \overline{\Lambda}(\overline{\Sigma}^0)e^+$	6.5 (13) ×10 ⁻⁷		$\Xi^0 o M^- l^+$	_	< 0.1	-1	-1	
$\Sigma^- \rightarrow p e^- e^-$	6.7×10^{-5}	BESIII PRD1 03(2021)052011	$\Xi^{0} \rightarrow K_{S} \nu$	_	< 2.0	+1	-1	
$\Sigma^- \to \Sigma^+ X$	1.2×10^{-4}							
$J/\psi \to \Lambda_c^+ e^-$	6.9×10 ⁻⁸	BESIII PRD99(2019)072006						

$\Lambda - \overline{\Lambda}$ oscillation

- Neutrino oscillations made $N \overline{N}$ oscillation to be quite plausible theoretically [PRL96, 061801(2006)]
- Seesaw mechanism indicates the existence of $\Delta(B L) = 2$ interactions.
- Many experiments searching $n \bar{n}$ oscillation with upper limit results, while few results from other baryons.
- 2007, K.-B. Luk pointed out that $\Lambda \overline{\Lambda}$ oscillation may also exist.
- 2010, X.-W. Kang and H.-B. Li [PRD81,051901] give a prospect of searching for $\Lambda \overline{\Lambda}$ oscillation at the BESIII experiment.
- 2017, the LHCb experiment presented a constraint on $\Xi_b^0 \overline{\Xi}_b^0$ oscillation.
- $\Lambda \overline{\Lambda}$ has a second generation quark, which can give further information compared with the result of proton decay which only have the first generation quark.
- A six-fermion operator, which could arise in models with leptoquarks or R-parity violating supersymmetric extensions of the SM, could allow BNV while being consistent with the experimental limit on the proton lifetime [PLB721, 82(2013)].

 $\Lambda - \overline{\Lambda}$ oscillation via $J/\psi \rightarrow pK^-\Lambda$

• Oscillation event (charge conjugation implied)

$$J/\psi \to pK^-\overline{\Lambda} \xrightarrow{oscillating} pK^-\Lambda$$

• Time integrated oscillation rate

$$\mathcal{P}(\Lambda) = \frac{\mathcal{B}(J/\psi \to pK^-\Lambda \to pK^-p\pi^-)}{\mathcal{B}(J/\psi \to pK^-\bar{\Lambda} \to pK^-\bar{p}\pi^+)} = \frac{N_{\rm WS}^{obs}/\epsilon_{\rm WS}}{N_{\rm RS}^{obs}/\epsilon_{\rm RS}}$$

• Most of the systematic uncertainties cancelled.

Starting with a beam of free Λ, the probability of generating a Λ after time *t* can be described by

$$\mathcal{P}(\Lambda, t) = \sin^2(\delta \mathbf{m}_{\Lambda\bar{\Lambda}} \cdot \mathbf{t})$$

• oscillation parameter can be deduced as

$$(\delta m_{\Lambda\bar{\Lambda}})^2 = \frac{\mathcal{P}(\Lambda)}{2 \cdot (\tau_{\Lambda}/\hbar)^2}$$

Right Sign Channel (Opposite Charge) $J/\psi \rightarrow pK^-\overline{\Lambda} \rightarrow pK^-(\overline{p}\pi^+)$

Wrong Sign Channel (Same Charge) $J/\psi \rightarrow pK^{-}\Lambda \rightarrow pK^{-}(p\pi^{-})$

$\Lambda - \overline{\Lambda}$ oscillation via $J/\psi \rightarrow pK^-\overline{\Lambda}$

- Result based on 1.3 billion J/ψ events
- $J/\psi \to pK^-\overline{\Lambda} \xrightarrow{oscillate} pK^-\Lambda$
- Almost background free.
- Upper limit based on TROLKE (90% CL)

$$P(\Lambda) = \frac{B(J/\psi \to pK^{-}\Lambda)}{B(J/\psi \to pK^{-}\overline{\Lambda})} < 4.4 \times 10^{-6}$$

• Oscillation parameter (90% CL)

BESIII Preliminary

$$\delta m_{\Lambda \overline{\Lambda}} < 3.8 \times 10^{-15} \text{ MeV}$$

WS

MC: pink filled histogram (normalized arbitrarily)

RS

Signal shape: simulated MC shape \otimes a Gaussian function.

Background shape: inclusive MC sample after excluding RS events.

Summary

- Many activities of searching LNV/CLFV or BNV processes in BESIII
- $BR(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L. (10 billion)
- $BR(J/\psi \to \Lambda_c^+ e^- + c.c) < 6.9 \times 10^{-8} @ 90\%$ C.L. (1.31 billion)
- $BR(D^+ \to \overline{\Lambda}(\overline{\Sigma}{}^0)e^+), BR(D^+ \to \Lambda(\Sigma^0)e^+) \sim O(10^{-6}, 10^{-7})$ (2.91fb⁻¹)
- $BR(\Sigma^- \to pe^-e^-) < 6.7 \times 10^{-5}, BR(\Sigma^- \to \Sigma^+ X) < 1.2 \times 10^{-4} (1.31 \text{ billion})$
- $\Lambda \overline{\Lambda}$ oscillation via $J/\psi \rightarrow pK^-\overline{\Lambda}$, $\delta m_{\Lambda\overline{\Lambda}} < 3.8 \times 10^{-15}$ MeV @ 90% C.L. (1.31 billion) BESIII Preliminary
- More results can be achieved or improved with larger data set in the near future.

Thank you!

$\Lambda - \overline{\Lambda}$ oscillation

• Starting with a beam of free $\overline{\Lambda}$, the probability of generating a Λ after time *t* can be described by

$$\mathcal{P}(\Lambda, t) = \sin^2(\delta \mathbf{m}_{\Lambda\bar{\Lambda}} \cdot \mathbf{t})$$

where $\delta m_{\Lambda \overline{\Lambda}}$ is the oscillation parameter and *t* is the decay time.

• Since there is no vertex detector at the BESIII, we can only measure the time integrated result

$$\mathcal{P}(\Lambda) = \frac{\int_0^\infty \sin^2(\delta m_{\Lambda\bar{\Lambda}} \cdot t) \cdot e^{-t/\tau_\Lambda} \cdot dt}{\int_0^\infty e^{-t/\tau_\Lambda} \cdot dt}$$

where $P(\Lambda)$ is the time integrated oscillation rate of $\overline{\Lambda} \to \Lambda$, $\tau_{\Lambda} = (2.632 \pm 0.020) \times 10^{-10}$ (s) is the life time of Λ baryon.

• Therefore, the oscillation parameter can be deduced as

$$(\delta m_{\Lambda\bar{\Lambda}})^2 = \frac{\mathcal{P}(\Lambda)}{2 \cdot (\tau_{\Lambda}/\hbar)^2}$$