

LHAASO最新结果

- 陈明君 on behalf of LHAASO collaboration
- 中国科学院高能物理研究所

中国物理学会高能物理分会第十三届全国粒子物理学术会议 2021.8.16 青岛

4410

CONTENTS

02 探测器和工程进展

03 主要物理成果

04 总结和展望

高海拔宇宙後観测站

4410

宇宙线:打开天文学的新窗口、发现新现象。

找到了150多个类似LHC的宇宙高能粒子加速器,新现象层出不穷。

20年来最活跃的高能、天体物理研究领域之一。

高海拔宇宙後観测站

4410

LHAASO的科学目标

寻找宇宙线起源核心目标

精确测量候选天体(超新星遗迹、黑洞等) 的伽马射线宽范围能谱,寻找宇宙线源存 在的证据,精确测量带电宇宙线成份与能 谱,探明宇宙线起源、传播的规律。

伽马射线源的巡天普查

大量发现伽马射线源,发现新现象、揭示 新规律。

探索新物理前沿

开展暗物质研究,超越加速器物理能标之上的新物理问题,量子引力效应或Lorentz对称性破缺效应等研究。

Status and Perspective of Astroparticle Physics in Europe 欧洲粒子天体物理现状及展望

2002年美国国家研究委员会 2004年美国国家科学技术委员会 确定的研究前沿: MICAL RESS(连接夸克和宇宙: 新世纪11个科学问题)

"1st knee": Xmax

LHAASO

Cosmic ray physics: composition and spectrum

亚丁机场跑道

Bird-eyes' View of LHAASO, March, 2021

- Location: 29°21' 27.6" N, 100°08'19.6" E
- Altitude: 4,410 m a.s.l.

高海拔宇宙线观测站(LHAASO)是"十二五"期间优先安排的国家重大科技基础设施。

LHAASO合作组成员

Scientists: 275

Zhen Cao^{1,2,3¹}, F. A. Aharonian^{4,5¹}, Q. An^{6,7}, Axikegu⁸, L. X. Bai⁹, Y. X. Bai^{1,2}, Y. W. Bao¹⁰, D. Bastieri¹¹, X. J. Bi^{1,2,3}, Y. J. Bi^{1,2}, H. Cai¹², J. T. Cai¹¹, Zhe Cao^{6,7}, J. Chang¹³, J. F. Chang^{6,1,2}, X. C. Chang^{1,2}, B. M. Chen¹⁴, J. Chen⁹, L. Chen^{1,2,3}, Liang Chen¹⁵, Long Chen⁸, M. J. Chen^{1,2}, M. L. Chen^{6,1,2}, Q. H. Chen⁶, S. H. Chen^{1,2,3}, S. Z. Chen^{1,2,2,2}, T. L. Chen¹⁶, X. L. Chen^{1,2,3}, Y. Chen¹⁰, N. Cheng¹², Y. D. Cheng¹², S. W. Cui¹⁴, X. H. Cui¹⁷, Y. D. Cui¹⁸, B. Z. Dai¹⁹, H. L. Dai¹²¹³, Z. G. Dai¹⁰, Danzengluobu¹⁶, D. della Volpe²⁰, B. D'Ettorre Piazzoli²¹, X. J. Dong^{1,2}, J. H. Fan¹¹, Y. Z. Fan¹³, Z. X. Fan¹², J. Fang¹⁹, K. Fang¹², C. F. Feng²², L. Feng¹³, S. H. Feng¹², Y. L. Feng¹³, B. Gao¹², C. D. Gao²², Q. Gao¹⁶, W. Gao²², M. M. Ge¹⁰, L. S. Geng¹², G. H. Gong²³, Q. B. Gou¹², M. H. Gu⁶¹², J. G. Guo^{1,2,3}, X. L. Guo⁶, Y. Q. Guo^{1,2}, Y. Y. Guo^{1,2,3,13}, Y. A. Han²⁴, H. H. He^{1,2,3}, H. N. He¹³, J. C. He^{12,3}, S. L. He¹¹, X. B. He¹⁸, Y. He⁸, M. Heller²⁰, Y. K. Hor¹⁸, C. Hou¹², X. Hou²⁵, H. B. Hu^{12,3}, S. Hu⁹, S. C. Hu^{1,2,3}, X. J. Hu²³, D. H. Huang⁸, Q. L. Huang¹², W. H. Huang²², X. T. Huang²², Z. C. Huang⁸, F. Ji^{1,2}, X. L. Ji^{6,1,2}, H. Y. Jia⁸, K. Jiang^{6,7}, Z. J. Jiang¹⁹, C. Jin^{1,2,3}, D. Kuleshov²⁶, K. Levochkin²⁶, B. B. Li¹⁴, Cong Li¹², Cheng Li⁶⁷, F. Li⁶¹², H. B. Li¹², H. C. Li¹², H. Y. Li⁷¹³, J. Li⁶¹², K. Li^{1,2}, W. L. Li²², X. Li^{6,7}, Xin Li⁶, X. R. Li^{1,2}, Y. Li⁹, Y. Z. Li^{1,2,3}, Zhe Li^{1,2}, Zhuo Li²⁷, E. W. Liang²⁸, Y. F. Liang²⁸, S. J. Lin¹⁸, B. Liu⁷, C. Liu¹², D. Liu²², H. Liu⁸, H. D. Liu²⁴, J. Liu^{1,2}, J. L. Liu^{29,30}, J. S. Liu¹⁸, J. Y. Liu¹², M. Y. Liu¹⁶, R. Y. Liu¹⁰, S. M. Liu¹³, W. Liu¹², Y. N. Liu²³, Z. X. Liu⁹, W. J. Long⁸, R. Lu¹⁰, H. K. Lv¹², B. Q. Ma²⁷, L. L. Ma¹², X. H. Ma¹², J. R. Mao²⁵, A. Masood⁸, W. Mitthumsiri³¹, T. Montaruli²⁰, Y. C. Nan²², B. Y. Pang⁸, P. Pattarakijwanich³¹, Z. Y. Pei¹¹, M. Y. Qi^{1,2}, D. Ruffolo³¹, V. Rulev²⁶, A. Sáiz³¹, L. Shao¹⁴, O. Shchegolev^{26,32}, X. D. Sheng^{1,2}, J. R. Shi^{1,2}, H. C. Song²⁷, Yu. V. Stenkin^{26,32}, V. Stepanov²⁶, Q. N. Sun⁸, X. N. Sun²⁸, Z. B. Sun³³, P. H. T. Tam¹⁸, Z. B. Tang^{6,7}, W. W. Tian³¹⁷, B. D. Wang¹³, C. Wang³³, H. Wang⁶, H. G. Wang¹¹, J. C. Wang²⁵, J. S. Wang^{20,30}, L. P. Wang²², L. Y. Wang¹², R. N. Wang⁶, W. Wang¹⁶, W. Wang¹², X. G. Wang²⁸, X. J. Wang¹², X. Y. Wang¹⁰, Y. D. Wang¹², Y. J. Wang¹², Y. P. Wang^{12,3}, Zheng Wang^{61,2}, Zhen Wang^{29,30}, Z. H. Wang⁹, Z. X. Wang¹⁹, D. M. Wei¹³, J. J. Wei¹³, Y. J. Wei^{12,3}, T. Wen¹⁹, C. Y. Wu¹², H. R. Wu¹², S. Wu¹², W. X. Wu⁸, X. F. Wu¹³, S. Q. Xi⁸, J. Xia⁷¹³, J. J. Xia⁸, G. M. Xiang^{3,15}, G. Xiao^{1,2}, H. B. Xiao¹¹, G. G. Xin¹², Y. L. Xin⁸, Y. Xing¹⁵, D. L. Xu^{20,30}, R. X. Xu²⁷, L. Xuo²², D. H. Yan²⁵, C. W. Yang⁹, F. F. Yang^{0,12}, J. Y. Yang¹⁶, L. L. Yang¹⁶, M. J. Yang¹², R. Z. Yang^{7²²}, S. B. Yang¹⁹, Y. H. Yao⁹, Z. G. Yao^{1,2}, Y. M. Ye²³, L. Q. Yin¹³, N. Yin²², X. H. You¹², Z. Y. You^{12,3}, Y. H. Yu²², Q. Yuan¹³, H. D. Zeng¹³, T. X. Zeng^{6,1,2}, W. Zeng¹⁹, Z. K. Zeng^{12,3}, M. Zha¹², X. X. Zhai¹², B. B. Zhang¹⁰, H. M. Zhang¹⁰, H. Y. Zhang²², J. L. Zhang¹⁷, J. W. Zhang⁹, L. Zhang¹⁴, Li Zhang¹⁰, L. X. Zhang¹¹, P. F. Zhang¹⁰, P. P. Zhang¹⁴, R. Zhang⁷¹³, S. R. Zhang¹⁴, S. S. Zhang¹², X. Zhang¹⁰, X. P. Zhang¹², Yong Zhang¹², Yi Zhang¹¹³, Y. F. Zhang⁸, Y. L. Zhang¹², B. Zhao⁸, J. Zhao¹², L. Zhao⁶⁷, L. Z. Zhao¹⁴, S. P. Zhao^{13,22}, F. Zheng³³, Y. Zheng⁸, B. Zhou¹², H. Zhou^{20,30}, J. N. Zhou¹⁵, P. Zhou¹⁰, R. Zhou⁹, X. X. Zhou⁸, C. G. Zhu²², F. R. Zhu⁵, H. Zhu¹⁷, K. J. Zhu^{5,1,2,3} & X. Zuo^{1,2}

Institutions: 31

¹Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China ²University of Chinese Academy of Sciences, 100049 Beijing, China ³TIANFU Cosmic Ray Research Center, Chengdu, Shichuan, China ⁴University of Science and Technology of China, 230026 Hefei, Anhui, China ⁵Tsinghua University, 100084 Beijing, China ⁶National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China ⁷National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China ⁸Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China ⁹Sun Yat-sen University, 519000 Zhuhai, Guangdong, China ¹⁰Shool of Physics and Technology, Guangxi University, 530004 Nanning, Guangxi, China ¹¹Hebei Normal University, 050024 Shijiazhuang, Hebei, China ¹²School of Physics and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China 13 Nanjing University, 210023 Nanjing, Jiangsu, China ¹⁴Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210034 Nanjing, Jiangsu, China ¹⁵Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China ¹⁶Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China ¹⁷School of Physical Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China ¹⁸Sichuan University, 610065 Chengdu, Sichuan, China ¹⁹Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China ²⁰Yunnan University, 650091 Kunming, Yunnan, China ²¹Yunnan Astronomical Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China 22 Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia ²³Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genéve, Geneva, Switzerland ²⁴Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand

正准备加入的机构: APS, France.

已签MOU的合作组: VERATAS, ANTRES, GVD. 正在签MOU的: CTAO, MAGIC, IceCube.

4410

Multi-Messenger Collaboration Network

**中国科学院高能物理研究所

4410

高能区(30TeV-1PeV)灵敏度领先的伽马天文探测器

与IceCube、Auger和CTA等并列国际四大宇宙线研究中心之一

4410

CONTENTS

02 探测器和工程进展

03 主要物理成果

04 总结和展望

4410

LHAASO的四种探测器

广角切伦科夫望远镜阵列WFCTA

今中国科学院高能物理研究所

电磁粒子探测器阵列 (ED)

- Central part: 4948 EDs, 15m spacing,
- Outside area: 294 EDs, 30m spacing.
- 5,242个探测器单元

Inner View of one ED

ED Specifications

Detection area	1m×1m; 5mm Lead covered
Detection efficiency	> 95%
Time resolution	< 2ns
Dynamic range	1~10000 particles/m²; 25%@1 particle, 5%@10000 particles
single channel rate	<2kHz@working Gain
Stable operation	> 20yrs (4410m, 0.6atm., ±25°C)

4410

缪子探测器阵列MD

1,188个探测器单元 40,000平米有效面积

4410

单元内水温长期变化

中国科学院高能物理研究所

Double Layer of Tyvek: reflectivity >99 %

KM₂A (ED+MD) performances

- Shower geometrical reconstruction
 - Arrival direction: resolution of **0.26**°@100 TeV
 - Shower core location: resolution of 3 m @100 TeV
 - Zenith angle effect

科学院高能物理研究所

CR background Rejection Power

- Counting number of measured muons in a shower
- Cutting on ratio N_{μ}/N_{e} <1/230
- BG-free (N_v>10N_{CR}) Photon Counting, for showers E>100 TeV from the Crab

水切伦科夫探测器阵列WCDA

探测器基本情况

- 三个水池, 占地: 78,000平米, ~6个足球场
- 有效水深为4m, 蓄水量35万吨
- 单元面积为5m×5m, 共3,120个
- 单元中心: 8/20寸PMT和1.5/3寸PMT

探测器工作原理

利用光电倍增管(PMT),对进入水中的宇宙 线、γ射线簇射的次级粒子产生的切伦科夫 光进行测量到达时间和电荷两种信息。

一号子阵列中的探测器单元

900个单元

8英寸 PMT: 北京滨松 CR365 (1-4000PEs)
1.5英寸 PMT: 海南展创 XP3960 (20-20000PEs)

20英寸 MCP-PMT: 北方夜视 GDB-6203 (1-1800PEs) **3英寸 PMT:** 海南展创XP72B22 (1-3000PEs)

高海拔宇宙後観测站

4410

20in PMTs used in 70% WCDA

 Enhancement of the sensitivity below 300 GeV

 Transient Phenomena: GRB, AGN-flares, multi-messenger astronomy ...

独有的莲花座收集结构, 以提高时间性能。

广角切伦科夫望远镜阵列(WFCTA)

Measure individual cosmic ray spectra from 10TeV to 100 PeV. 共18台

ltem	Requirement	
Mirror area	>5 m²	
Number of pixels	1024 pixels	
Ponting precision	<0.1°	
Field of view	16°×16°	
Dynamic range	10 - 32000 PEs	
Resolution	<5%@1000 PEs	

高海拔宇宙後観测站

4410

WFCTA SiPM Camera

- > SiPM enables an operation of WFCTA with full moon.
- Effective Operational time: 1,400 hours per year.
- **9** 中国科学院高能物理研究所

Accurate measurement over SIX order of magnitudes (1TeV–1EeV) with only ONE array – LHAASO

◆ To remove systematic uncertainties from measurements of different detectors

To build a bridge from direct measurement at lower energy to measurements at the highest energy (Auger, etc.)

5 中国科学院高能物理研究所

LHAASO首次测量到来自 标准烛光Crab的PeV伽马光子事例

LHAASO Coll., *Science*, 373, 425 (2021)

- 广角切伦科夫望远镜阵列(WFCTA)测量: 能量=0.92+0.28/-0.20 PeV
- 地面阵列KM2A 测量:光子误判率: <0.1%, 能量=0.88±0.11 PeV
- 实现独有的能量交叉标定

4410

时钟分配系统: White Rabbit (小白兔技术)

- ◆ 可实现>1 km范围内,7000多个节点, 精确时钟同步 (<0.3 ns);
- ◆ 结合FEE可在每个时钟节点对hit加入绝对时间信息。

三到五级的结构

Trigger-less off-line event building

- 硬件上,只设置最小信号 的过阈触发(trigger-less), 之后full data传输到DAQ系 统中,进行soft-trigger.
- Triggering, building, (re-construction) and storage by online computers

高海拔宇宙後観測站 4410

	ED	MD	WCDA	WFCTA
离线触 发条件		时间窗口:400ns >20Nhits	8-in: 1/3 PE, 13/1/ 20-in: 1 PE, 30/1/ 时间窗口: 2001	44 相邻两个像素过阈 44 时间窗口: 80 ns ns

高海拔宇宙後観测站

4410

高性能计算平台

高性能计算中心: 将建成13,000 CPU核。 海量数据存储中心: 将建成25PB硬盘和25PB磁带库。 高速传输链路:

2.4 Gpbs between two sites.

四类探测器的小结

(KM2A+WCDA: Duty cycle >95%)

探测器类型	WCDA 水切伦科夫探测器阵列	KM2A 电磁粒子探测器阵列 缪子探测器阵列	WFCTA 广角切伦科夫望远镜阵列
主要探测对象	光子、电子、µ子	电子、µ子	大气切伦科夫光
关注的物理过程	簇射横向	簇射横向	簇射纵向
主要物理目标	伽玛天文	伽玛天文	宇宙线
主要研究对象	河外源	河内源	宇宙线能谱
主要工作能区	0.1-50 TeV	10-1,000 TeV	100 TeV-1 EeV
光敏探头	8in、20in和1.5in、3in PMT 共计6,240个 3,120个单元	1.5in和8inPMT 共6,430个 5,242 ED,1,188 MD	18台望远镜 每台1,024个像素,近2万个SiPM
空间分布	78,000平米	15米、30米间距	

热中子探测器阵列 (ENDA)

- 中国-俄罗斯合作ENDA (Electron-Neutron Detector Array),目标是建设400台热中子探测器阵列。
- 探测EAS热中子是区分原初宇宙线成分的一个新技术手段,开展混合探测膝区分成份能谱的研究。

西藏羊八井(16台)

4410

高海拔宇宙德観测站

今中国科学院高能物理研究所

三项创新技术的应用

1,高精度多节点的时钟分配系统

• 分布在1.3平方公里内,近万个探测器节点实现了亚纳秒级别的时钟同步。

2, 广角大气切伦科夫望远镜成像探头

- 近2万个SiPM,在宇宙线实验方面为首次大规模使用。
- 大大提升了有效观测时间, Duty cycle 是PMT技术的2-3倍。

3, 大面积微通道板型光电倍增管

- 在宇宙线领域首次大规模使用(2,220个20in PMT),降低了探测器成本和国产化程度提高。
- 降低探测器阈值,提高对瞬变源等观测灵敏度。

⑤ 中国科学院高能物理研究所

项目工程进展时间线

1	2009年2月	香山科学会议第342次学术讨论会上,曹臻研究员提出 LHAASO计划			
2	2015年12月31日	项目建议书获得国家发改委批复			
3	2017年4月	初设批复			
4	2017年6月	项目主体工程动工			
5	2018年2月	33个ED探测器运行			
6	2019年4月	首批探测器正式投入科学观测			
7	2019年12月	1/2规模探测器阵列投入科学运行观测	 边建设、边运行 		
8	2020年12月	3/4阵列投入科学运行			
9	2021年7月	全阵列运行开始			

八年立项,四年按期完成工程任务。

4410

CONTENTS

02 探测器和工程进展

03 主要物理成果

04 总结和展望

SED of the Crab: "standard Candle"& PeVatron

LHAASO, Science, DOI10.1126/science.abg5137, 2021

- LHAASO (Comparison) :
- Covering 3.5 decades of energy
- Agreeing with other experiments below 100 TeV
- Self cross-checking between WCDA & KM2A
- > LHAASO (Discovery) :
- Unique UHE SED
- A PeVatron without ambiguity
- Clear origin: a well-known PWN

SED of the Crab: Extreme E-accelerator

LHAASO, Science, DOI10.1126/science.abg5137, 2021

- Perfect interpretation of one-zone electronic origin up to 50TeV
- Reasonable extension up to 1 PeV, with a deviation of 4 σ
- An extreme e-accelerator:
 - 2.3 PeV electrons
 - in ~0.025 pc core region
 - accelerating efficiency of 15% (1000 × better than SNR shock waves)
- Can not rule out proton origin of photons ~1 PeV, yet.
- 1 or 2 photons are expected above 1 PeV per year that enables a clarification in 2 or 3 years.

Discovery in KM2A Survey Our Galaxy is full of PeVatrons

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×σ)	Emax (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26-0.10+0.16	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07*0.16	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

12 PeVatrons are discovered

- ◆ High Standard: significance >7σ
- ◆ BG-free: Cosmic Ray background

rejection rate <10⁻⁴

- High Statistics: 530 UHE photons
- Multiple Type of Sources
- No trend of cut-off in SED of γ -ray

sources

Updates using newer data show

continuous extension to higher energies

高海拔宇宙後観测站

4410

Record by KM2A 1.4 PeV Photon from Cygnus Direction

LHAASO, Nature, 594, p.33-36, 2021

今中国科学院高能物理研究所

高海拔宇宙後観测站 4410

4410

CONTENTS

02 探测器和工程进展

03 主要物理成果

04 总结和展望

高海拔宇宙後観测站 4410

Brief summary

LHAASO的探测器按期已经全部建成,并在2021年7月下旬,全阵列转入运行模式。

经过近一年的数据积累,发现银河系内有12个PeVetrons的天体源,并有一个来自天鹅座的1.4PeV伽马光子:

- 1. Our galaxy is full of PeVatrons accelerating particles over 1 PeV,
- 2. Onset of "UHE (>0.1 PeV) Astronomy",
- 3. Potential CR origins: many type of candidates,
- 4. The Crab: extreme electron-PeVatron emitting 1.1 PeV photon and posing challenges .

More discoveries are expected, big potential of discovery of Galactic CR origins, stay tuned ...

髙海拔宇宙後観测站

4410

未来项目计划:

成像大气切伦科夫望远镜大型阵列:

- 和LHAASO优势互补,开展对100TeV以上的超高能伽马射线源进行空间形态的细致测量 (0.06度的角分辨率);
- 跟踪观测活动星系核的耀变现象+多波段符合 观测研究。
- 3. 32台6米口径成像C-望远镜。

超高能中微子望远镜阵列:

1,目标聚焦在百TeV以上的超高能中微子探测; 2,有效区分出超高能光子是否为强子起源,冲击 超高能宇宙线起源的百年未解问题。

3,约6Km*6Km,~5万个探头。

中國科學院為能物理研究所

谢谢大家!

