CDEX-300v program for ⁷⁶Ge 0vββ search at CJPL

清华大学工程物理系 2021.8.18

马豪

中国物理学会高能物理分会第十三届全国粒子物理学术会议,山东大学(青岛)

Outline

- Neutrinoless double beta decay $(0\nu\beta\beta)$
- Introduction to CDEX and CDEX-300v
- $0\nu\beta\beta$ result from CDEX
- Conceptual design of CDEX-300v
- Future plan of CDEX-300v

Neutrinoless double beta decay

- Important questions for neutrino physics:
 - Neutrino mass and mass hierarchy
 - Dirac or Majorana nature of neutrino
 - Neutrino species
 - ...
- If 0vββ decay observed:
 - Neutrino behaves as a Majorana particle
 - Lepton number conservation violated
 - Neutrino absolute mass

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + Q_{\beta\beta}$ 3

Neutrinoless double beta decay

Germanium as 0vßß detector: Intrinsic high-purity crystal Source = detector (high ε) Ability to be enriched to 86% (*A*) Excellent E resolution (σ) ~0.1%@2MeV \bullet Background rejection (b): multiplicity, PSD.. $\langle m_{\beta\beta} \rangle$ Half life **Exposure Experiment** Iso [10²⁵ yr] [kg-yr] [meV] 10² Gerda 76 Ge 127.2 18 80 - 182 KamLAND-Zen 136 Xe 10.7 61 - 165 594 10 130 Te 110 - 520 **CUORE** 1.5 115.9

- Current best $T_{1/2}$ result achieved by Gerda
- Energy resolution means not only "money", but also physics

CDEX Collaboration

- Formed in 2009, 11 institutions and ~80 people now
- Direct detection of dark matter with Germanium detectors.

CDEX Roadmap

- Persistently focused on DM direct detection
- Extended to 76 Ge $0\nu\beta\beta$ search

CJPL-I

$0\nu\beta\beta$ result from CDEX

7

- First ⁷⁶Ge $0\nu\beta\beta$ result in China.
- Exposure: 304 kg·day, CDEX-1 PPC (natural crystal)
- $T_{1/2}^{0\nu} \ge 6.4 \times 10^{22} \text{ yr}, 90\% \text{ C. L.}$

Science China P.M.A. (2017) 60: 071011

Physics goal and technical route

- First stage of CDEX ⁷⁶Ge 0vββ search project
- Physics goal: $T_{1/2} > 10^{27}$ yr, $< m_{\beta\beta} >: 30-70$ meV

$$T_{1/2}^{0\nu} \propto \varepsilon \cdot A \cdot \sqrt{\frac{M \cdot T}{b \cdot \sigma}} \qquad \left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(E_0, Z) |M^{0\nu}| < m_{\beta\beta} >^2$$

+

• Technical route:

Enriched Ge Array
✓ Enriched ⁷⁶Ge (A)
✓ ~ 300kg Ge (M)
✓ Energy resolution (σ)

LAr veto + LN₂ shield}

 \checkmark LAr as active shield

✓ LN_2 as passive shield

- Material bkg control
 - \checkmark Cosmogenic radioactivity in Ge
 - ✓ Materials near Ge crystal
 - ✓ Rn in LAr & $LN_2...$

CDEX-300v Conceptual Design

Overview

- LN₂ tank shared with CDEX-50
- Reentrant tube containing LAr submerged in LN_2
- Ge detector array immersed in LAr (veto) tube
- Ge detectors divided into 3 modules (~100kg each)

LN₂ tank

Specification

- Total volume: 1976m³
- LN_2 volume: $\Phi 13m \times H13m$, $\sim 1725 m^3$
- LN₂ as Passive Shield & Cryogen
- Five top flanges for detector deployment
 - $-1 \times \varphi 1.5m$, centrally
 - 4 $\times \phi 750 mm$, on a 6m-diameter circle

Background

- >4m LN₂ can shield most bkg from surroundings
- Rn in LN₂ will be controlled by purification*

CDEX-300v LAr System(1)

Baseline Design:

- 8 t (5.7m³) LAr held by **Cu** / Ti /steel cryostat
- LAr is constantly purified
- LAr cryostat immersed in LN₂
- LAr light read out by WLS Fiber + SiPM

CDEX-300v LAr System(2)

LAr cooling

LN₂ tank (~1725 m³)

GAr purification

LAr tank (~ 8 ton Ar)

LAr Purification:

- Removing $O_2 / H_2O / N_2$ from GAr (~10ppb impurity)
- Maintaining high light yield & transmission length
- Removing Rn by active carbon (~μBq/m³)
- Possible underground Argon (Ar-42 depleted)

LAr Cooling:

- Cooling purified GAr to LAr
- Heat exchanger + electrical condenser
- Backup LN₂ cooling module

CDEX-300v LAr System(3)

LAr Scintillation Light Readout

- Read out via SiPM + Fiber
- Inner fiber curtain placed between detector strings to collect light near Ge detectors
- Outer-layer fiber curtain to ensure maximum light collection
- Optional: Ge strings inside light guide tubes*

*详见张震宇, CDEX-300v实验中 的液氩反符合技术预研 <u>https://indico.ihep.ac.cn/event/10</u> <u>906/session/2/contribution/197</u>

Ge detector Array

Baseline Design:

- 3 modules, ~100kg/module
- 7 strings/module, ~15 detectors/string
- Total mass of Ge detectors: ~300kg
- Top clean room for Ge detector and fiber installation

Ge detectors

• Enriched BEGe (Baseline)

- Mass: 1-1.2 kg; Ge-76 > 86%
- Size: $\varphi 80 \times 40 \text{ mm}$
- Dead layer: 0.6 mm
- $E_r: <0.15\% @2MeV$
- Commercial / Home-made

• ICPC (optional)

- Mass: $\sim 2 \text{ kg}$
- Size: $\varphi 80 \times 80 \text{ mm}$
- Dead layer: 0.6 mm
- Home-made
- Bigger Detector \rightarrow Less Electronics

Ge Detectors

- Baseline design
 - Naked enr-BEGe immersed in LAr (veto)
- R&D
 - Ge crystal sealed in LB acrylic capsule and isolated from LAr
 - Front Electronics on the outer surface of acrylic shell

Enriched Ge detector procurement

- Enriched germanium dioxide (⁷⁶Ge >86%) from Russia in 2021
- Whole technical chain established
- To start enr-Ge detector production in 2021

Detector R&D

Home-made Ge detector:

- Co-axial/BEGe/PPC/ICPC
- Cold finger/Naked immersion ____

BEGe

ICPC

Cold finger cooling

Naked crystal to LN₂

Long-term stability: energy resolution 18

LAr Test Facility

- S1: Operating & Purifying 200L LAr in a closed cycle (2021-)
- S2: Studying the light yield / transmission of LAr in different impurity levels (2022-)
- S3: Deploying Ge detectors to test veto efficiency (2023-)

Material Background Control

ALL materials to be screened and selected

Ge detector & FEE:

- Mitigation of cosmic activation on the ground
- Low mass & pure detector structures
- Low background cables or flexible PCB
- CMOS ASIC Front-end Electronics
- Underground fabrication of Ge detectors

Underground Electro-forming copper

- U, Th activity $<10\mu Bq/kg$
- Free of cosmogenic radioactivity in copper

CDEX-300v Plan

- Test and operate LAr test facility in 2022
- Enr-Ge detectors test to start in 2022
- Hall C1 of CJPL-II ready for experiment in Mid 2023
- Experimental setup before 2024
- Ge detector installation and test in 2024

Summary

- Searching for $0\nu\beta\beta$ decay plays an essential role in understanding the nature of neutrinos.
- CDEX-300v for 76 Ge $0\nu\beta\beta$
 - a 300kg-scale enriched Ge detector system at CJPL-II
 - physics goal : $T_{1/2} > 10^{27}$ yr, 90% C.L.
 - Detector installation in 2024
- R&D in progress

.

- Detector and electronics
- LAr purification and scintillation light readout
- Material screening and selection

Thanks for your attention!

http://cdex.ep.tsinghua.edu.cn

http://cjpl.tsinghua.edu.cn