

Direct neutrino mass measurements with KATRIN experiment

Weiran Xu for the KATRIN collaboration

Laboratory for Nuclear Science, Massachusetts Institute of Technology

13th National Academic Conference on Particle Physics, Qingdao, August 18, 2021

Tritium beta decay and neutrino mass

• Determine the neutrino masses with ...

	Cosmology	0 uetaeta	Single eta decay
Observable	$\sum_i m_i$	$ \sum_i U_{ei}^2 m_i ^2$	$\sum_{i=1}^{3} U_{ei} ^2 m_i^2$
Upper limit	0.12eV	0.18eV	1.1eV*
Dependency	ΛCDM	Majorana \emph{m}_{ν}	Kinematics

^{*}KATRIN Collaboration, PRL 123, 221802 (2019)

Karlsruhe Tritium Neutrino (KATRIN) experiment

 \bullet Precise measurements with the Magnetic Adiabatic Collimation with an Electrostatic (MAC–E) filter, energy resolution $\sim 1 \rm eV$

KATRIN timeline

KNM1 + KNM2: 5% of the full KATRIN statistics

Measured electron spectra

Main background: Radon decay

Breakdown of uncertainty

Observable non-Poissonian background due to time-correlated events from single $^{219}{\rm Rn}$ decay. See PRD~104,~012005~(2021) for details.

Challenge: molecular final state distribution

- Theoretical calculation in PRL 84, 242 (2000), with updated results to be published this year
- Confirmation on branching ratio by TRIMS, PRL 124, 222502 (2020)
- Quantum computation and simulation under investigation

Analysis strategy and results – Frequentist

- Independent approaches for systematic uncertainties
 - Covariance matrix, MC propagation, Pull-terms
- Blind analysis
 - Artificial final state distributions
- Ring-wise fitting for golden run lists
 - 1 common $m_{
 u}^2$, 12 imes ring-wise endpoint, signal and background rates
- Best fit value for m_{ν}^2 , with extrapolated model in the negative region
 - KNM1: $m_{\nu}^2 = -1.0^{+0.9}_{-1.1} \text{eV}^2$
 - KNM2: $m_{\nu}^2 = 0.26^{+0.34}_{-0.34} \text{eV}^2$

First sub-eV upper limit on neutrino mass

- KNM1 at 90% C.L.:

 $m_
u < 1.1 \mathrm{eV}$

- KNM2 at 90%

C.L.: $m_{\nu} < 0.9 \text{eV}$

 $m_{\nu} < 0.9$ ev

- Combined result at 90% C.L.:

 $m_{
u} < 0.8 \mathrm{eV}$

arXiv:2105.08533 submitted to Nature Physics

Reference for the Lokhov-Tkachov construction:

Phys. Part. Nucl. 46, 347-365 (2015)

Bayesian combination of the two campaigns

- Flat prior for KNM1
- KNM1 prior for KNM2
- Bayesian limit at 90% C.I.:

$$m_{
u} < 0.7 \mathrm{eV}$$

Beyond neutrino mass: new physics with KATRIN

- Sterile neutrinos
 - 1st campaign results in *PRL* 126, 091803 (2021)
 - 2nd campaign results coming soon
 - TRISTAN detector upgrade for keV-sterile searches
- Relic neutrinos
 - Sensitivity in *PRD 82, 062001* (2010)
- Lorentz violation, new interactions, etc.

Summary

- KATRIN has improved the model-independent upper limit of $m_{\nu} < 0.8 \mathrm{eV}$ at 90% C.L. with the first two measurement campaigns
- KATRIN is now running smoothly to reach the 5-year 0.2eV sensitivity
- New techniques under investigation for a precise calculation of molecular final states

Thanks for your attention!

Backup: TRIMS results

Backup: detector response

