

JUNO实验探测⁸B太阳中微子的物理潜力

中国科学院高能物理研究所

On behalf of the JUNO collaboration

2021-8-17@第十三届全国粒子物理学术会议

探测低能⁸B太阳中微子的物理潜力 @JUNO

Matter-vacuum Transition Phase (E > 2 MeV)

JUNO detector

- 20 kt LS, $3\%/\sqrt{E}$ energy resolution
- ✓ Afford excellent self-shielding

2.2 σ (2018) -> 1.4 σ (2020)

CPS-HEP2021

- Comparable statistics to Super-K
- ✓ Expected 2 MeV detection threshold

Solar & reactor measurement in Δm_{21}^2 using one single detector

探测低能⁸B太阳中微子的物理潜力 @JUNO

Matter-vacuum Transition Phase

Two main observables:

✓ ES channel (v+e → v+e): E_{vis} > 2 MeV
✓ Day-night asymmetry

Challenge: Cosmogenic & Radioactivity

LS radioactivity: 10⁻¹⁷ g/g (solar phase)
Optimized fiducial volume
Better muon veto approach

Solar & reactor measurement in Δm^2_{21} using one single detector

Neutrino flux and spectrum

✓ Flux: $(5.25 \pm 0.20) \times 10^6$ /cm²/s from SNO NC measurement (*Phys.Rev.C* 88 (2013) 025501)

<u>内禀天然放射性本底</u>

~2 MeV threshold achievable

✓ ²¹⁰Bi, ⁴⁰K are not easy to be removed.
 ✓ Alpha energy after quenching is < 2 MeV
 ✓ ²¹⁴Bi, ²¹²Bi and ²⁰⁸Tl decays can be removed by cascade decays.

• Well discrimination on α/β with PMT shape information

外部天然放射性本底

External radioactivity

Main materials	Measurement (U/Th)	Information
Acrylic	< 1 ppt	Measured by NAA (LRT2019) and ICP-MS (arXiv2011.06817)
Stainless steel	< 1 ppb	Same supplier with Daya Bay
PMT glass	~200 ppb	Ref: NIMA 898 (2018) 67–71
Water	Radon < 0.1 Bq/m ³	Ref: RDTM (2018) 2:48
Rock	10~30 ppm	4 m water and 5 mm HDPE shielding, negligible

R < 16.5 m

>5

R < 15 m

(3, 5)

12.2

External neutron captures

- ✓ High energy gamma: neutron captures on iron, PMT glass and acrylic
- \checkmark Residual: < 0.001 cpd with R < 16.5 m

Final optimized fiducial volume cut

Energy (MeV) Target mass (kt) 16.2

 \checkmark With about 5 m self-shielding, ²⁰⁸Tl decays from external materials are negligible.

R < 13 m

(2, 3)

7.9

Muon rate

2

3

---- Distance from n to μ

Distance[m]

Spectrum

Yield in LS is scaled from measurement by Borexino and KamLAND

Systematics	Systematic uncertainty	12 B	⁸ Li	$^{6}\mathrm{He}$	¹⁰ C	$^{11}\mathrm{Be}$
	livetime (τ)	$29.1 \mathrm{ms}$	$1.21 \mathrm{~s}$	1.16s	$27.8~{\rm s}$	19.9s
	KamLAND [47]		3.3%			10.8%
	JUNO	1%	$1 \sim 3\%$	$1{\sim}3\%$	$5{\sim}10\%$	$5{\sim}10\%$

✓ The actual isotope yields, distance distributions, and TFC fractions will be measured *in-situ* in future.

本底和信号小结

⁸B signal efficiency

- ✓ Muon veto efficiency: 52%
- ✓ (3, 5) MeV: 52% (muon veto) * 80% (²¹²Bi-²⁰⁸Tl cut)

Other systematics

- ✓ FV cut: 1%, refer to Borexino
- (Phys. Rev. D, 101(6):062001, 2020).
- ✓ Detector energy scale: 0.3%, refer to Daya Bay

(Nucl. Instrum. Meth. A, 940:230-242, 2019.)

The discontinuities at 3 MeV and 5 MeV come from the different FV cut.

 $\Delta m_{21}^{2\star} = 4.8 \times 10^{-5} \text{ eV}^2$, and $\Delta m_{21}^{2\dagger} = 7.5 \times 10^{-5} \text{ eV}^2$

end/kt	\mathbf{FV}	⁸ B signal off	$12\mathbf{p}$	⁸ T ;	10C	6Ho	11 Bo	238TT	232Th	$\overline{\mathbf{u}} \circ \mathbf{FS}$	Total bkg	Signal	rate at
сра/к	ΓV	D signar en.	Б	LI	U	me	De	0	111	и-е вы	10tai bkg.	$\Delta m_{21}^{2\star}$	$\Delta m_{21}^{2\dagger}$
$(2, 3) {\rm MeV}$	7.9 kt	$\sim 51\%$	0.005	0.006	0.141	0.084	0.002	0.050	0.050	0.049	0.39	0.32	0.30
(3, 5) MeV	12.2 kt	$\sim 41\%$	0.013	0.018	0.014	0.008	0.005	0	0.012	0.016	0.09	0.42	0.39
(5, 16) MeV	16.2 kt	$\sim 52\%$	0.065	0.085	0	0	0.023	0	0	0.002	0.17	0.61	0.59
Syst. error	1%	<1%	3%	10%	3%	10%	1%	1%	2%				

Background after reduction, and muon veto efficiency corrected.

Systematics

Energy-independent hypothesis: *flat* P_{ee} *for* E > 2 MeV

• This hypothesis is rejected at 2.7 σ with large Δm_{21}^2 , and the statistic-only sensitivity can reach 5 σ .

日夜效应

Day-night-asymmetry $DNA = \frac{R_D - R_N}{(R_N + R_D)/2}$

✓ R_N , R_D are background-subtracted signal rates during the Day (cos θ_z < 0) and Night (cos θ_z > 0)

Sensitivity (10 years data)

✓ Most systematics are cancelled, statistics dominate

Day/Night asymmetry: Super-K results @ Neutrino2020 $A_{DN}^{Fit} = (-3.6 \pm 1.6(stat) \pm 0.6(syst)) \% \rightarrow A_{DN}^{Fit} = (-2.1 \pm 1.1) \%$

✓ JUNO will reach SK 20y uncertainty (1.1%) in less than ten years due to the better S/B ratio.

χ^2 fitting with both energy and sun-detector angle

 \checkmark the discrimination on Δm_{21}^2 from 4.8×10⁻⁵ eV² to 7.5×10⁻⁵ eV² can reach 2σ .

Discussion on worse conditions

✓ ²¹⁰Po reach Phase I of Borexino (10⁴ cpd/kt), ²⁰⁸Tl could not be reduced. Dashed line in the right panel ✓ ²³⁸U/²³²Th ~ 10⁻¹⁵ g/g, $E_{vis} > 5$ MeV. Dotted line in the right panel

■详细研究了本底压低策略

- ✓内禀天然放射性本底: Bi-Po, Bi-Tl 级联衰变标记
- ✓外部天然放射性本底:不同能量区域实行优化的靶体积
- ✓ 宇生同位素本底: muon 径迹 & 中子三重符合

■JUNO探测⁸B太阳中微子的物理潜力(10 years data)

- ✓信号 60,000, 本底 30,000, <u>E_{th} ~ 2 MeV</u>
- ✓排除平的 P_{ee} vs. E: ≥2 σ for the large Δm_{21}^2 (7.5×10⁻⁵ eV²)
- ✓日夜不对称性测量精度: 0.9%, better than Super-K's latest result 1.1%
- ✓用同一探测器,不同中微子源(太阳,反应堆),测量振荡参数 Δm_{21}^2
 - the discrimination on Δm_{21}^2 from 4.8×10⁻⁵ eV² to 7.5×10⁻⁵ eV² can reach 2σ .

✓合作组文章已发表: CPC Vol. 45, No.2 (2021)

Internal background

Strategy for Background reduction

✓ With correlation cuts (time, position, energy) most of ²¹⁴Bi, ²¹²Bi and ²⁰⁸Tl decays can be removed

	²¹⁴ Bi- ²¹⁴ Po- ²¹⁰ Pb	²¹² Bi- ²¹² Po- ²⁰⁸ Pb	²¹² Bi- ²⁰⁸ Tl- ²⁰⁸ Pb	
Prompt signal	Beta (2, 3.5) MeV	Beta (2, 3.5) MeV	Alpha (0.5, 0.7) MeV	X7'. '1.1.
Delayed signal	Alpha (0.85, 1.05) MeV	Alpha (0.85, 1.05) MeV	Beta (3, 5) MeV	Visible ener
Time & position correlation	2 ms & 2 m	5 µs & 2 m	22 min & 1 m	

Isotopes in the ²³⁸U and ²³²Th decay chains with decay energies larger than 2 MeV

Isotope	Decay mode	Decay energy	au	Daughter	Daughter's τ	Removal eff.	Removed signal
^{214}Bi	β^{-}	$3.27 { m MeV}$	$28.7 \min$	²¹⁴ Po	$237 \ \mu s$	>99.5%	<1%
^{212}Bi	β^- : 64%	$2.25 { m MeV}$	87.4 min	²¹² Po	431 ns	93%	~ 0
^{212}Bi	lpha:~36%	$6.21 { m MeV}$	87.4 min	208 Tl	4.4 min	N/A	N/A
208 Tl	β^{-}	$5.00 { m MeV}$	$4.4 \min$	^{208}Pb	Stable	99%	20%
234 Pa ^m	β^{-}	$2.27 { m MeV}$	$1.7 \min$	^{234}U	245500 years	N/A	N/A
^{228}Ac	β^{-}	$2.13 { m MeV}$	$8.9 \ h$	228 Th	1.9 years	N/A	N/A

External radioactivity and neutron captures

External radioactivity

- Simulation is done with JUNO offline software
- Contribution from rock is negligible with at least
 4 m water and 5 mm HDPE liner shielding
- ✓ Effectively removed by the fiducial volume (FV) cut

External neutron captures

 High energy gamma: neutron captures on iron, PMT glass and acrylic

Unit: cpd	R<17.7 m $$	R<17 m $$	R<16 m $$	R<15 m $$	R<14 m $$
Acrylic	1.3e-5	1.53e-7	2.7e-9	5.57e-11	0
Node	3.52e-5	8.9e-7	5.1e-8	4.1e-9	4.3e-10
Bar	9.8e-5	2.6e-6	1.8e-7	1.2e-8	2.7e-9
PMT glass	2.5e-2	1.8e-4	7.2e-6	0	0
Total	0.025	1.9e-4	7.5e-6	1.6e-8	3.1e-9

PMT glass dominates the contribution, but can be effectively remove with R < 16.5 m FV cut </p>

Final optimized fiducial volume cut

	R < 16.5 m	R < 15 m	R < 13 m
Energy (MeV)	> 5	(3, 5)	(2, 3)
Target mass (kt)	16.2	12.2	7.9

Long-lived cosmogenic isotopes

Muon rate

Yield

✓ With ~700 m overburden, muon flux is 0.004 Hz/m² with an average energy of 207 GeV.

✓ About 3.6/10 Hz muons passing through the LS/water

Three-Fold Coincidence cut (TFC) among muon, spallation neutron capture and isotope decay Used in this study

Isotope	Decay mode	Decay energy (MeV)	au	Yield in LS (/d Geant4 simulation	ay) Scaled	TFC fraction
$^{12}\mathrm{B}$	β^{-}	13.4	29.1 ms	1059	2282	90%
⁹ Li	β^- : 50%	13.6	$257.2 \mathrm{\ ms}$	68	117	96%
${}^{9}C$	β^+	16.5	182.5 ms	21	160	>99%
⁸ Li	$\beta^- + \alpha$	16.0	$1.21 \mathrm{~s}$	725	649	94%
$^{6}\mathrm{He}$	β^{-}	3.5	$1.16 \mathrm{~s}$	526	2185	95%
$^{8}\mathrm{B}$	$\beta^+ + \alpha$	~ 18	$1.11 \mathrm{~s}$	35	447	>99%
^{10}C	β^+	3.6	$27.8 \mathrm{\ s}$	816	878	>99%
^{11}Be	β^{-}	11.5	$19.9 \mathrm{\ s}$	9	59	96%
^{11}C	β^+	1.98	$29.4 \min$	11811	46065	98%
						(1 D '

Scaled: scale from measurement by Borexino and KamLAND

Long-lived cosmogenic isotopes

Optimized veto strategy

	For reconstructed track	Strategy	Dead time
Whole detector veto	w/ track	Veto 2 ms	44%
	w/o track	Veto 1 s	
Cylindrical volume veto (<i>d</i> : distance between candidate to muon track)	w/ track	Veto d < 1 m for 5 s Veto 1 m < d < 3 m for 4 s Veto 3 m < d < 4 m for 2 s Veto 4 m < d < 5 m for 0.2 s	
TFC veto		Veto 2 m spherical volume around neutron for 160 s	4%

μ track

Differential cross section of v_e and $v_{\mu\tau}$

Figure 4: Differential cross section of $\nu_e - e$ (blue) and $\nu_{\mu,\tau} - e$ (black) elastic scattering for a 10 MeV neutrino. The stronger energy dependence of the $\nu_{\mu,\tau} - e$ cross section, as illustrated in red, produces another smooth upturn in the visible electron spectrum compared to the case of no $\nu_{\mu,\tau}$ appearance.