Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

The STAR Collaboration, Nature Physics 16, 409-412 (2020)

Related paper and talks:

(1) Peng Liu et al., Chinese Physics C 43, 124001 (2019)

(2) Peng Liu, talk of Quark Matter 2018, Italy, proceedings: Nuclear Physics A 982, 811-814 (2019)

(3) Peng Liu, talk of NN2018, Japan, proceedings: JPS Conference Proceedings 32, 010091 (2020)

刘鹏

PAs: 陈金辉*、董昕、刘鹏*、马余刚、许长补(以姓氏首字母排序)

第十一届"晨光杯"青年优秀论文答辩 第十三届全国粒子物理学术会议(2021) 2021年08月16日-20日

Motivation and Significance (Discovery of hypernucleus)

M. Danysz and J. Phiewski, Phil. Mag. 44 (1953) 348

The first hypernucleus discovered in a balloon-flown emulsion plate in 1952

M. Danysz and J. Pniewski, *The London*, *Edinburgh*, *and Dublin Philosophical Magazine and Journal of Science* **44**, 348-350 (1953) 刘鹏,博士论文,中国科学院大学(2020)

Motivation and Significance (Why study hypernuclei?)

- ✓ Enrich our knowledge about hypernuyclei physics.
- ✓ Excellent probe to investigate YN interactions.
- ✓ Implications for the EOS of neutron stars.
- ✓ CPT testing in hypernuclei sector.

р n Л Нурегtriton (³H)

STAR collaboration, Science 328, 58 (2010)

YN interaction ---- lifetime of hypertriton

ALICE Collaboration, Physics Letters B 797, 134905 (2019)

刘鹏/第十一届"晨光杯"青年优秀论文答辩

Motivation and Significance (Measurements of hypertriton)

YN interaction ---- Λ binding energy B_{Λ} of hypertriton

Table 3. The original and the recalibrated Λ separation energy for hypernuclei data from 1967 [18], 1968 [19], and 1973 [20]. The listed errors are the reported statistical uncertainties only, and the recalibrated Λ separation energy should be considered as subject to the same errors as the original measurements. The Λ separation energy is in units of MeV.

TT	NPB1 (1967) [18]		NPB4 (1968) [19]		NPB52 (1973) [20]	
Hypernucleus	Original	Recalibrated	Original	Recalibrated	Original	Recalibrated
$^{3}_{\Lambda}$ H	0.20 ± 0.12	0.41	0.01 ± 0.07	0.08	0.15 ± 0.08	0.27
$^{4}_{\Lambda}$ H	2.13 ± 0.06	2.35	2.23 ± 0.03	2.31	2.08 ± 0.06	2.20
$^{4}_{\Lambda}$ He	2.20 ± 0.06	2.45	2.36 ± 0.04	2.47	2.42 ± 0.04	2.53
⁵ He	3.08 ± 0.03	3.33	3.08 ± 0.02	3.19	3.17 ± 0.02	3.28
$^{6}_{\Lambda}$ He	4.09 ± 0.27	4.08	4.38 ± 0.19	4.23	4.42 ± 0.13	4.39

Peng Liu et al., Chinese Physics C 43, 124001 (2019)

- Patrick Achenbach et al., POS (Hadron2017) 207
- Larger statistical uncertainties.
- > No knowledge on the systematic error and may suffer from a large systematic error.
- > B_{Λ} spread in a big range.
- > No measurements in recent 45 years.

CPT testing in hypernuclei sector

ALICE Collaboration, Nature Physics 11, 811-814 (2015)

- "Qualitatively different tests of CPT symmetry are a continuing priority for fundamental physics, as are revisitations of past tests with improved accuracy." <u>STAR collaboration, Nature Physics 16, 409-412 (2020)</u>
- The first observation of antihypertriton in 2010 by STAR collaboration provides us an opportunity to test CPT symmetry in hypernuclei sector, which is never tested.

Reconstruction of hypertriton and antihypertriton

Peng Liu (for the STAR Collaboration), <u>talk of NN2018</u> and <u>JPS Conference Proceedings</u> **32**, 010091 (2020) Peng Liu (for the STAR Collaboration), <u>talk of QM2018</u> and <u>Nuclear Physics A</u> **982**, 811-814 (2019) For details: 刘鹏,博士论文,中国科学院大学 (2020)

Reconstruction of hypertriton and antihypertriton

Details on the HFT : https://drupal.star.bnl.gov/STAR/starnotes/public/sn0600

	Detector	Radius (cm)	Hit Resolution (R × φ) / Z (μm/μm)	Thickness
	SSD	22	30/860	1% X ₀
	IST	14	170/1800	1.32% X ₀
	PXL	8	6.2/6.2	0.52% X ₀
		2.8	6.2/6.2	0.39% X ₀

Data:

Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, 1.2 billion in 2014, 3.4 billion in 2016.

Precisely determining of decay vertex due to the high spatial resolution (< 30 µm) of the HFT

A typical antihypertriton 3-body decay in the detectors. The left side shows a less magnified view of the STAR detector. including a projected view of the large number of tracks detected by the TPC in a typical gold-gold collision. The right side shows a magnified view of the four cylindrical layers of the HFT located at the centre of the TPC

STAR collaboration, Nature Physics 16, 409-412 (2020)

Invariant mass distributions with excellent signal/background ratio

STAR collaboration, Nature Physics 16, 409-412 (2020)

- ✓ First CPT symmetry validation in hypernuclei sector with a precision of 10⁻⁴, which is an order of magnitude improved over the early data with same mass number.
- ✓ New mass difference between ³He and ³He is placed by STAR measurement.
- Place constraint to Standard-Model Extension (SME). Colladay, D. et al., Physical Review D 55, 6760 (1997)

Results (Λ binding energy)

- ✓ Early measurements are in agreement with 0 within statistical errors.
- ✓ The current STAR result differs from 0 with a statistical significance of 3.4σ .
- ✓ The central value of current STAR measurement is larger than the commonly used measurement from 1973.
- ✓ Theoretical calculations span in a wide range.
- ✓ Physics Today: "Strange matter interacts strongly with nucleons"(<u>https://doi.org/10.1063/PT.6.1.20200327a</u>)

感谢各位评委老师 敬请批评指正