

B-tagging Calibration and Observation of Higgs Boson Decays to a pair of bottom quarks with the ATLAS Detector

李昌樵(TDLI/SJTU)

Aug 16th, 2021

第十一届晨光杯青年优秀论文评选报告

- Education:
 - ► 2008.9 2012.6
 - ► 2012.6 2018.11

Bachelor in Physics, USTC¹, Hefei (China). Co-tutorship Ph.D. in Particle Physics, USTC and LPNHE² / SU³, Paris (France). Supported by the CSC² from 2016 to 2018.

- Current and Previous Positions: As a commitment to CSC, I started the domestic service since I graduated. ► 2019.1 - 2020.5 Postdoctoral Researcher, USTC, Hefei (China). Postdoctoral Researcher, SJTU-TDLI, Shanghai (China). 2020.6 - present

Thesis is supervised by Prof. LIU Yanwen and Dr. MARCHIORI Giovanni

- 1. University of Science and Technology of China
- 2. Laboratoire de Physique Nucléaire et de Hautes Energies
- 3.Sorbonne Universités
- 4. China Scholarship Council

- Involved into two related topics:
- B-tagging calibration with 2015-16 data JHEP 08 (2018) 89
 - by UCL team)
 - My qualification task (QT), one of the internal note editors
- VHbb analysis with 2015-16 data JHEP 12 (2017) 024
 - a.k.a Evidence paper, mainly contributed to the statistical study and sample production
 - Presented the results at La Thuile 2018
- VHbb analysis with 2015-17 data Phys. Lett. B 786 (2018) 59
- VHbb differential XS measurement JHEP 05 (2019) 141
 - Dominant contribution including truth categorization, evaluation of the systematics etc.
 - One of the internal note editors and Presented the analysis at the paper approval meeting (PAM)

During my Ph.D.

• Identification of the b-jets and Search for the $H \rightarrow bb$ decay in VH production mode

The paper combines the results of *Tag-and-Probe* method (by our team, USTC-Sorbonne) and PDF method (

• a.k.a Observation paper, mainly contributed to the statistical study by providing the guidance to the younger students and contributed to European Update of Particle Physics Strategy (HL-LHC extrapolation for VHbb)

B-tagging calibration

- Identification of the jets originated from b quarks by exploiting long lifetime of b-hadrons
- MV2 tagger: Boosted Decisions Tree (BDT), combining the output of basic algorithms
- Calibrations of the MV2 tagger
 - PDF method (conventional)
 - Tag-and-Probe method (my QT)
 - Dileptonic ($e^{\pm}\mu^{\mp}$) ttbar events: rich b-jets, high S/B
 - Exactly 2 jets for the Tag-and-Probe:
 - ► Tag jets: pass 85% tagging WP of MV2c10
 - Probe jet: the other jet in the pair High purity
 - The efficiency is measured with probe jets

)

B-tagging calibration: Results

- The MVA approach introduced, a BDT trained to suppress background
- The theory systematics significantly reduced by the cut on BDT score
- Efficiencies are measured vs jet pT
- Data over MC efficiency scale factors (SF) are derived, to correct ATLAS simulations
- ► Results:
 - Systematic uncertainties are dominant; they are ~2% for medium-pT jets from $H \rightarrow b\bar{b}$
 - SFs consistent with unity within uncertainties
- The precise calibration supports us for more accurate physics results

Published for SISSA by 2 Springer

RECEIVED: May 7, 2018 REVISED: July 23, 2018 ACCEPTED: August 6, 2018 PUBLISHED: August 16, 2018

Measurements of *b*-jet tagging efficiency with the ATLAS detector using $t\bar{t}$ events at $\sqrt{s} = 13 \text{ TeV}$

Search for the H → bb decay in VH

- $H \rightarrow b\bar{b}$ decay:
 - Highest branching ratio: Br=58%
 - Tests Higgs Yukawa coupling to fermions
 - $Br(H \rightarrow b\bar{b})$ constrains invisible Higgs decays

Associated VH production:

- One of the four main Higgs production modes at LHC (at 13 TeV: σ_{tot} ~ 56 pb, σ_{VH} ~ 2.2 pb)
- Leptonic signature
 - Better triggering
 - Better MJ suppression
- Most sensitive mode for $H \rightarrow b\bar{b}$ at the LHC

- ► $H \rightarrow b\bar{b}$ recoiling against $V \rightarrow leptons$ $H \rightarrow bb$
- ► 2 high-p_T b-jets, not from pile-up, b-tagged
- Kinematic properties consistent with VH production, e.g. mbb~125 GeV
- $V \rightarrow leptons$
- ▶ 1 or 2 isolated charged leptons ($W \rightarrow lv, Z \rightarrow ll$) and/or large MET¹ ($Z \rightarrow vv, W \rightarrow lv$)
 - Also useful for triggering purposes
 - ► $Z \rightarrow II$: same flavour, $m_{II} \sim m_Z$
- Channels denoted by the number of reconstructed charged leptons (e or μ)

Event Categorisation

- Event categories with different S/B to increase sensitivity: split with p_T^V and Njet in each lepton channel
- Main discriminant variables: m_{bb} , p_T^V , and ΔR_{bb} (Combined into a Boosted Decision Tree with other var.)
- Separate training for lepton/pTV/Njet regions
- Combined Likelihood built across channels and multiple analysis regions

		Categories			
Channel	SR/CR	$75 \ { m GeV} < p_{ m T}^V < 150 \ { m GeV}$		$p_{\rm T}^V > 150 { m ~GeV}$	
		2 jets	3 jets	2 jets	3 jets
0-lepton	SR	-	-	BDT	BDT
1-lepton	SR	-	_	BDT	BDT
2-lepton	SR	BDT	BDT	BDT	BDT
1-lepton	W + HF CR	-	_	Yield	Yield
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}

Evidence of $H \rightarrow b\bar{b}$

Express measurement in terms of signal strength

$$\mu = \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$$

- ► Results (36.1 fb⁻¹):
 - Evidence of $H \rightarrow b\bar{b}$ at 3.5 σ (3.0 σ exp.)
 - ► µ = 1.20 ^{+0.42} -0.36
 - Dominant uncertainties : signal modeling, MC statistics, b-tagging
- ► Run1+Run2 (36.1 fb⁻¹) Combination:
 - Evidence of $H \rightarrow b\bar{b}$ at 3.6 σ (4.0 σ exp.)
 - ► Combined µ = 0.90 +0.28 -0.26

VHbb Analysis (79.8 fb⁻¹)

- Main updates from "evidence":
 - ► More data: 79.8 fb⁻¹ vs. 36.1 fb⁻¹
 - More MC statistics (filters)
 - Better evaluation of systematic uncertainties
 - Total error reduced by 34%
- ► Results (79.8 fb⁻¹):
 - Significance: 4.9σ (4.3 σ exp.)
 - ► µ = 1.16 ^{+0.27} -0.25
- Combination with Run-1 Analysis:
 - Significance: 4.9σ (5.1 σ exp.)

$$\begin{split} \mu_{\rm WH} &= 1.08^{+0.24}_{-0.23}({\rm stat.})^{+0.29}_{-0.27}({\rm syst.}) \\ \mu_{\rm ZH} &= 0.92^{+0.21}_{-0.20}({\rm stat.})^{+0.19}_{-0.17}({\rm syst.}) \\ \mu_{\rm VH} &= 0.98^{+0.14}_{-0.14}({\rm stat.})^{+0.17}_{-0.16}({\rm syst.}) \end{split}$$

M. M. C.
Con Con
Ē
C
Ľ
d

Physics Letters B 786 (2018) 59-86

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

data 2015-2017: 79.8 fb-1

Observation of $H \rightarrow b\bar{b}$ decays and V H production with the ATLAS detector

Observation of $H \rightarrow bb$ and VH production

- Main updates from "evidence":
 - More data: 79.8 fb⁻¹ vs. 36.1 fb⁻¹
 - More MC statistics (filters)
 - Better evaluation of systematic uncertainties

Combination with other production modes or decay modes:

- ► With VBF(+ggF), ttH
- Exp. significance = 5.5σ
- Obs. significance = 5.4σ

 $H \rightarrow bb observed$

Physics Letters B 786 (2018) 59-86

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

data 2015-2017: 79.8 fb⁻¹

Observation of $H \rightarrow b\bar{b}$ decays and V H production with the ATLAS detector

- With $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$
- Exp. significance = 4.8σ
- Obs. significance = 5.3σ

VH observed

More detailed measurement

- Measurement of XS as the function of p^V
 - Regions sensitive to new physics (higher p_T^V) isolated

$$WH, 150 < p_{\rm T}^W < 250 \text{ GeV}$$

 $WH, p_{\rm T}^W > 250 \text{ GeV}$

 $ZH, 75 < p_{\rm T}^Z < 150 \,{\rm GeV}$

ZH, 150 < $p_{\rm T}^Z$ < 250 GeV

 $ZH, p_{\rm T}^Z > 250 \text{ GeV}$

4 dimension-6 operators $\mathcal{O}_W, \mathcal{O}_B, \mathcal{O}_{HW}, \text{ and } \mathcal{O}_{HB}$

coefficients recast into

$$\bar{c}_{HW} = \frac{m_W^2}{g} \frac{c_{HW}}{\Lambda^2}, \ \bar{c}_{HB} = \frac{m_W^2}{g'}$$
$$\bar{c}_W = \frac{m_W^2}{g} \frac{c_W}{\Lambda^2}, \ \bar{c}_B = \frac{m_W^2}{g'} \frac{c_B}{\Lambda^2}$$

the sum $\bar{c}_W + \bar{c}_B$ is already strongly constrained

Nore detailed measurement

- Measurement of XS as the function of p^V
 - Regions sensitive to new physics (higher p_T^V) isolated
- Results:
 - Good agreement between data and SM prediction

Published for SISSA by 🖉 Springer

JHEP05 (2019) 141

RECEIVED: March 13, 2019 REVISED: May 7, 2019 ACCEPTED: May 13, 2019 PUBLISHED: May 23, 2019

Measurement of VH, $H \rightarrow b\bar{b}$ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

Constraints set on coefficients of the new physics operators

Summary

- During my Ph.D., I made the contributions to the b-tagging calibration and VHbb analysis for the ATLAS experiments.
- The discovery of the VH and $H \rightarrow b\bar{b}$ obtained through a tight cooperation of the physicists all over the world.
- Chinese teams made indispensable contributions:
 - Nanjing University, Shandong University, SJTU/TDLI, Sun Yat-Sen University, Academia Sinica, USTC, IHEP etc.
- VHbb development after my graduation:
 - The analysis is updated with more statistics. (Full Run2 data)
 - The measurement is performed in new approach. (Boosted)
 - More detailed measurements. (Higher p_T^V bin)
 - More advanced tagging algorithm. ($X \rightarrow bb$ NN tagger developed for boosted)

- Grateful to have this chance to communicate with you on this interesting scientific topic!

Backup

Data and simulated event samples

- ► data: 36 fb⁻¹ collected in 2015 and 2016
- simulated samples of ttbar and main backgrounds (single-top, Z+jets, dibosons)
- Nominal MC samples used to measure central values

		Events having tag jets
	diboson	291 ± 9
	$\operatorname{singletop}$	5331 ± 39
	$\mathbf{Z} + \mathbf{jets}$	570 ± 44
~90%	$6 t\bar{t}$	66807 ± 157
	fake leptons	853 ± 29
	total MC	73853 ± 170
	data	72792

Alternative samples used to evaluate modelling systematics

Р	rocess	Mat	rix element	PDF Set, Tune	Hadronisation/	Order i	in
ge		enerator		Fragmentation	pQCD Inclusive	of	
			N	ominal Conorators		Inclusive	
No INO			N Dou	CTT10	Dammar (490	NNLOI	NINT I
	tt	Pov	VHEG-BOX	CT10, Perucia2012	Pythia 6.428	NNLO+	NNLL
Sin	gle top	Pov	VHEG-BOX	CT10	PVTHIA 6 428	NNLO [84]
((Wt)	V1		PERUGIA2012	1 1 1 1 1 1 1 20		~ -]
Z	+ jets	MG5	_aMC@NL\$	NNPDF23LO [86]	, Pythia 8.186	NNLO [88]
		2.	2.2 [85]	A14 [87]			
Di	boson	She	RPA 2.1.1	CT10	Sherpa 2.1.1	NLO	
	Hard Scatter Generatio		Hard Scatter Generation	aMC@	NLO+Herwig++		
tī			Fragmentati on Hadronizati on	Pov	wheg+Pythia6		
	single top (Wt)		PDF central value	aMC@NLO+He aMC@NLO+He	erwig++ with CT10 erwig++ with PDF4 100 PDFs) PDFs LHC15	
			Additional Radiation	radlo: hdam radlo: hdam	p = 2 x m _{top} , scale p = 1 x m _{top} , scale	=0.5 =2.0	
			Hard Scatter Generation	aMC@	NLO+Herwig++		
			Fragmentati on Hadronizati on	Pov	wheg+Pythia6		
			Additional Radiation	radlo: hdam radlo: hdam	p = 2 x m _{top} , scale p = 1 x m _{top} , scale	=0.5 =2.0	
			ttbar diagram overlap	Powheg+Pyt Sch Powheg+Pyt	hia6 Diagram Rem eme (nominal) hia6 Diagram Sub Scheme	noval tract	
	Z+je	ets	Har Scatter	Pov	wheg+Pythia8		

Generation

MV2c10 Tagging Efficiency Measurement

- Contaminations subtracted relying on the simulation
 - ► Poor modelling: $\varepsilon_{non-b}^{t\bar{t} MC}$
 - Large b-jet purity is crucial for the measurement precision

$$\varepsilon_{\text{data}} = \frac{\varepsilon_{\text{data}}^{\text{Uncorr}} - (1 - f_{\text{b}}^{\text{t}\bar{\text{t}}} \text{ MC}) \times \varepsilon_{\text{non-b}}^{\text{t}\bar{\text{t}}} \text{ MC}}{f_{\text{b}}^{\text{t}\bar{\text{t}}} \text{ MC}}$$

Purity BDT: increase the b-jet purity

- Larger b-jet purity could be obtained with a larger fraction of events with 2-jet pair as (b,b) flavours
- An event-level "Purity BDT" is trained to discriminate (b,b) pair in tt from other 2-jet combinations in tt and single top events, and used to suppress the latter
- ► 7 variables used as inputs for the training

Variable	
$p_{ m T}^{j_0}$	Į
$p_{\mathrm{T}}^{j_1}$	$p_{ m T}$
$p_{\mathrm{T}}^{l_0}$	p_{T}
$E_{\mathrm{T}}^{\mathrm{miss}}$	Miss
nFjets	Ν
$\min R(l_0,j)$	Minimal ΔR separat
201	Minimum of the two averages of invar
m_{lj}	symbolically, mit

Meaning

 $p_{\rm T}$ of the leading- $p_{\rm T}$ jet

- of the subleading- $p_{\rm T}$ jet
- of the leading- $p_{\rm T}$ lepton
- ing transverse momentum
- Number of forward jets
- tion between the leading lepton to all jets
- riant masses of a jet and a lepton for the two combinations,

 $n((m_{l0j0} + m_{l1j1})/2, (m_{l0j1} + m_{l1j0})/2)$

Optimisation of the Purity BDT requirement

smaller number of probes (increasing stat. uncertainties)

- Chosen cut minimises total (stat+syst) uncertainty
- jets

Cut on the purity BDT can increase the b-jet purity (reducing syst. uncertainties) at the cost of

• Optimisation favours cut that improves the b-jet purity quite significantly for low- p_T and high- p_T

Specific selection vs lepton channel

► Take the 0-lepton as an example

Variable	Selection		
MET	>150 GeV		
$H_T = \Sigma p_T jets$	>120 GeV for 2-jet events >150 GeV for 3-jet events		
Δφ(E _T miss,p _T miss)	< 90°		
Δφ(b,b)	< 140°		
Δφ(E _T miss,bb)	> 120°		
min[Δφ(E _T ^{miss} ,jet)]	> 20° for 2-jet events > 30° for 3-jet events		

- ► H_T cut to avoid trigger turn-on mis-modelling
- Angular cuts to reject QCD multi-jet

Additional selection criteria to suppress processes hard to model and estimate: QCD multi-jet

Combined Likelihood fit is built across channels and multiple analysis regions

Channel	SR/CR	$75\mathrm{GeV} < p_\mathrm{T}^V < 150\mathrm{GeV}$		$p_{\rm T}^V > 150 {\rm GeV}$	
	,	2 jets	3 jets	2 jets	3 jets
0-lepton	SR			BDT	BDT
1-lepton	\mathbf{SR}			BDT	BDT
2-lepton	SR	BDT	BDT	BDT	BDT
1-lepton	W + HF CR			Yield	Yield
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}

Each bin contributes with a Poisson term

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\theta}) = \left[\prod_{i \in \text{bins}} \text{Pois}\left(n^i | \boldsymbol{\mu} \nu_s^i(\boldsymbol{\theta}) + \nu_b^i(\boldsymbol{\theta}) \right) \right]$$

Parameter of interest

$$\mu = \frac{\sigma \cdot BR}{\sigma_{\rm SM} \cdot BR_{\rm SM}}$$

The Fit Model

Nuisance parameters (NPs) θ :

- Uncertainties from performance:
 - Lepton / Jet / MET / b-tagging
- Parametrized shapes and relative normalisations across regions

VZ, $Z \rightarrow b\bar{b}$

Cross-checks: results with 36 fb⁻¹

Signal strength

 $\mu = 1.30^{+0.28}_{-0.27}(\text{stat.})^{+0.37}_{-0.29}(\text{syst.})$

- Expected significance: 2.8σ
- Observed significance: 3.5σ

VH, $H \rightarrow b\bar{b}$ **Dijet mass**

Impact of systematic uncertainties on $\mu_{\rm VH}$

			-
e of un	certainty	σ_{μ}	-
		0.259	-
stical		0.161	
matic		0.203	
rimenta	l uncertainties		-
		0.035	-
		0.014	
\mathbf{ns}		0.009	
	b-jets	0.061	٦
ging	c-jets	0.042	
	light jets	0.009	Ì
	extrapolation	0.008	J
ıp		0.007	
nosity		0.023	
retical a	and modelling un	certainties	-
1		0.094	-
ing nor	malisations	0.035	
jets		0.055	
\mathbf{jets}		0.060	
		0.050	ł
e top qu	ıark	0.028	
son		0.054	
-jet		0.005	J
tatistic	al	0.070	-

- Dominant effects:
 - Signal Modelling
 - Background Modelling
 - ► W+jet
 - Single top Wt
 - ► Z+jets
 - ► tī
 - b-tagging calibration
 - Limited Monte Carlo statistics

Measurements of b-jet tagging efficiency with the ATLAS detector using $t\bar{t}$ events at $\sqrt{s} = 13$ TeV

Atlas Collaboration - arXiv preprint arXiv:1805.01845, 2018 - arxiv.org Page 1. EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) JHEP 08 (2018) 89 DOI: 10.1007/JHEP08(2018)089 CERN-EP-2018-047 5th September 2018 Measurements of b-jet tagging efficiency with the ATLAS detector using t t events at $\sqrt{s} = 13$ TeV ... ☆ 99 被引用次数: 433 相关文章 所有 18 个版本 >>>

Evidence for the $H \rightarrow b\overline{b}$ decay with the ATLAS detector Atlas Collaboration - arXiv preprint arXiv:1708.03299, 2017 - arxiv.org ... Submitted to: JHEP ... arXiv:1708.03299v2 [hep-ex] 11 Aug 2017 ... was established only via the observation of the decay into T-leptons through the combination of ATLAS and CMS Run 1 results [11], and, more recently, through the combination of CMS Run 1 and Run 2 results [12] ... ☆ 99 被引用次数: 269 相关文章 所有 19 个版本 >>>

Observation of $H \rightarrow b\bar{b}$ decays and VH production with the ATLAS detector Atlas Collaboration - arXiv preprint arXiv:1808.08238, 2018 - arxiv.org Page 1. EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) Phys. Lett. B 786 (2018) 59 DOI: 10.1016/j.physletb.2018.09.013 CERN-EP-2018-215 2nd October 2018 Observation of $H \rightarrow b^- b$ decays and VH production with the ATLAS detector ... ☆ 99 被引用次数:360 相关文章 所有 29 个版本 ≫

Measurement of VH, $H \rightarrow b\bar{b}$ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector ATLAS collaboration - arXiv preprint arXiv:1903.04618, 2019 - arxiv.org Page 1. EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) JHEP 05 (2019) 141 DOI: 10.1007/JHEP05(2019)141 CERN-EP-2019-019 13th November 2019 Measurement of VH, $H \rightarrow b^- b$ production as a function of the vector-boson transverse momentum ... ☆ 99 被引用次数:56 相关文章 所有56个版本 >>>

Citation (not precise)

[PDF] arxiv.org

[PDF] arxiv.org

[PDF] arxiv.org

[PDF] arxiv.org