Measurement of proton-E⁻ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV at RHIC-STAR

Ke Mi, for the STAR Collaboration

Central China Normal University

Introduction

The study of baryon-baryon interactions is important to understand existence of strangelets and various exotic hadrons, and for modeling of astronomical objects such as neutron stars. A detailed knowledge of nucleon (NN) potentials exists in literature, however very little is known about interactions between anti-nucleons. Similarly lack of scattering data for hyperon-nucleon (YN) systems makes it difficult to construct YN potentials. In heavy-ion collisions, a large number of baryons are produced in each nucleus-nucleus collision, which allows us to study the NN and YN interactions. Measurements of two-particle correlation function are used to study the space-time dynamics of the source created in heavy-ion collisions. At low relative momentum, the two-particle correlations are effected by the Final State Interactions (FSI), making it possible to measure FSI between nucleon and multi-strange baryon (Ξ and Ω). In this poster, the first measurement of proton- Ξ correlation function from STAR experiment at $\sqrt{s_{NN}}$ = 200 GeV will be presented.

STAR Detector

Femtoscopy

☆ Excellent Particle Identification ☆ Large, Uniform Acceptance at Midrapidity ☆ Time Projection Chamber(TPC): Ionization energy loss dE/dx of charged particles \Leftrightarrow Time of Flight(TOF): m^2 of charged particles -5

PID in TOF

p-E⁻ correlation function

- \Rightarrow Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Combine data taken at 2010,2011 and 2014
 - High statistics data with minimum bias trigger event: 1.5Billion
- \Rightarrow Proton selection: Use TPC and TOF to identify
- \Leftrightarrow Ξ^- reconstruction:

- Use helix method to reconstruct
- A set of topological cuts are applied to reduce background

 \Leftrightarrow Fit function:

- Proton: Gaussian function(Signal) Exponential function(Background)
- Ξ^- : Double Gaussian function(Signal) 2nd Polynomial function(Background)
- \Rightarrow Combine p Ξ^- and $\overline{p}\overline{\Xi^+}$ pairs to improve signals counts

— signal

Particle

 $\Xi^{-}(\Xi^{+})$

 $\Lambda(\overline{\Lambda})$

- background

Decay

 $\Lambda(\overline{\Lambda}) + \pi^{-}(\pi^{+})$

 $p(\overline{p})+\pi^{-}(\pi^{+})$

Branch

Ratio

99.887%

63.9%

c**τ**(cm)

4.91

7.89

- \Rightarrow The first measurement of correlation function for p- Ξ^- from Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- \Rightarrow The measured correlation functions from central and peripheral collisions and

- ☆ Measured correlation functions enhance above unity Attractive interaction in pE pairs
- ☆ Enhancement above Coulomb at two centralities --- Observation of the strong interaction
- \Rightarrow Sensitive to the source size, more attractive interaction in small system
- \Rightarrow Feed-down corrected, residual correlations are not corrected

ratio all show an enhancement above Coulomb, indicates the existence of strong interaction in $p-\Xi^-$ pairs Outlook

 \succ Fit correlation function to extract physics parameters (source size, scattering) length and effective range)

 \succ Look into more decay channels of H-dibaryon (p- Ω , $\Lambda\Lambda$) \succ Few body interaction and bound state search (d- Λ ,d- Ξ ,d- Ω)

> Reference: Nuclear Physics A 998 (2020) 121737 Phys. Rev. Lett. 123, 112002 Nature 588(2020) 233 Nuclear Physics A 982(2019) 359-362 Nature volume 527, pages345–348(2015)

 $rightarrow The ratio C_{SI}(k^*) =$

 $\frac{\text{CF(small system)}}{\text{CF}(40\% - 80\%)} = \frac{\text{CF}(40\% - 80\%)}{\text{CF}(40\% - 80\%)}$ CF(0%-40%)CF(large system) provides direct access to strong interaction of $p\Xi^-$ without much contamination from the Coulomb ☆Enhancement above Coulomb ---Hints presence of strong interaction in $p\Xi^-$

Contact information: mike1996@mails.ccnu.edu.cn

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations