

J/ψ production within jet in p+p collisions

杨 钱(山东大学)

- Motivation of studying J/ψ production
- J/ψ fragmentation function measurements
- Summary

J/ψ in heavy-ion collision

 J/ψ is a sensitive probe of the deconfinement in the QGP: color screening dissociation

J/ ψ : heavy mass (m_c = ~1.5 GeV/c²,) \rightarrow early creation long lifetime

 $T = 0 \qquad 0 < T < T_C \qquad T > T_C$ *Illustration: A. Rothkopf*

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \times \frac{\left(\frac{d^2 N_{J/\psi}}{2\pi p_{T} dp_{T} dy}\right)_{Au+Au}}{\left(\frac{d^2 N_{J/\psi}}{2\pi p_{T} dp_{T} dy}\right)_{p+p}}$$

J/ψ production in jet

"Jet fragmentation accounts for almost all prompt J/ ψ meson produced at large p_T (>15 GeV/c)"

- p+p @ 8 TeV CMS PLB,804 (2020) 135409

Jet quenching mechanism is an importance source of J/ψ in A+A collision, which is not token into account in theory yet!

Limited knowledge about J/ψ production in jet!

J/ψ production mechanism

Models differ in $c\bar{c}$ production and the treatment of hadronization:

 NRQCD approach: color singlet/octet $c\overline{c}$ + its evolution to J/ ψ (Long distance matrix elements)

J/ψ NRQCD LDMEs from four different groups

	$\langle \mathcal{O}(^{3}S_{1}^{[1]}) angle \ \mathrm{GeV}^{3}$	$\langle {\cal O}(^1S_0^{[8]}) angle \ 10^{-2}~{ m GeV^3}$	$\langle {\cal O}({}^3S_1^{[8]}) angle \ 10^{-2}~{ m GeV^3}$	$\langle {\cal O}({}^3P_0^{[8]}) angle \ 10^{-2}~{ m GeV^5}$
Bodwin	0^{a}	9.9	1.1	1.1
Butenschoen	1.32	3.04	0.16	-0.91
Chao	1.16	8.9	0.30	1.26
Gong	1.16	9.7	-0.46	-2.14

Zhong-Bo Kang et .al, PRL, 119 (2017) 032001

Sensitive probes for different J/ψ production mechanism

J/ψ measurement at LHCb

- Prompt J/ ψ in data is produced much less isolated than Pythia8 prediction
- Non-prompt J/ ψ in jet production consistent with Pythia8 prediction

J/ψ in jets at STAR

- First measurement of J/ψ production in jets at RHIC
- Detector effects are accounted for via unfolding
- Charged jet to J/ψ fragmentation function :
 - No significant z dependence observed within uncertainties

Cone size dependence

- More data is needed to study the R dependence
- Analysis of high statistics data sample from 2017 (L_{int} = 336.4 pb⁻¹) is ongoing
 →More precise measurement

Fragmentation: data vs Pythia8

- Different trends, and J/ ψ production is less isolated in data than in Pythia8
- May help to understand J/ ψ polarization: Lin Dai et .al, PRD, 96 (2017) 036020
 - Production: parton showers vs parton-parton scattering ?

Fragmentation: RHIC vs LHC

- Both show less isolated production
- Difference in jet measurements
 - Charged jet at RHIC vs. full jet at LHC
 - Different kinematic range

Measurement vs. NRQCD

- GFIP: Gluon Fragmentation Improved Pythia
- FJF: Fragmentation Jet Functions

- Better agreement with LHCb measurement $\Rightarrow J/\psi$ produced in parton showers
- LDMEs from global fits (B&K) give worse agreement than LDMEs from high-pT fitting (Chao et al. and Bodwin et al.)
- High energy parton or color-octet $c\bar{c}$ will shower first, then form a J/ ψ

Fraction of J/ ψ produced in jets

- The fraction of a $p_T > 5$ GeV/c J/ ψ produced in a $p_T > 10$ GeV/c jet is 3.7% ± 0.3% (stat.) ± 0.2%(sys.)
- The probability of producing a J/ψ in charged jet is significantly higher in data than in Pythia8 for the measured kinematics

Summary

- J/ ψ production in jet studies are important for QGP study as well as for J/ ψ production mechanism study
- Compared to Pythia8
 - Less isolated production in data
 - More J/ψ produced in jets in data
- Similar observations of less isolated J/ψ production in jets compared to Pythia8 at both RHIC and LHC, despite of different jet measurement methods (charged jet vs. full jet) and different kinematic ranges
- Theory inputs are very welcome for STAR measurements

Thanks!