

sPHENIX: The next generation heavy ion experiment at RHIC

中国物理学会高能物理分会第十三届全国粒子物理学术会议,2021年8月17日 Hideki Okawa (大川英希) 复旦大学 现代物理研究所 & 核物理与离子束应用教育部重点实验室

sPHENIX Mission

LONG RANGE PLAN for NUCLEAR SCIENCE

- A state-of-the-art jet detector; <u>the first new</u> <u>detector at RHIC in >20</u> <u>years.</u>
- Completing the scientific mission of RHIC.
- Complementarity to LHC.
- Beam Use Proposals (BUP) in 2020 & 2021.
- sPHENIX as the highest priority for Runs 2023-2025 (PAC Report, Sep. 2020)

sPHENIX Collaboration

Asian regional meetings were held annually during the pre-pandemic days (at Fudan in 2019)

Spokespersons: Gunther Roland (MIT), Dave Morrison (BNL)

- Upgrade of PHENIX; proposed in 2010 & collaboration formed in 2016.
- More than 320 members from 84 institutions in 14 countries (as of early 2021)
- 9 institutes from China (复旦, 北大, 华中师范, 近代物理所, 科大, 上海应物所, 清华, 原子能院, 中山) Hideki Okawa CPS-HEP第十三届全国粒子物理学术会议

4 Core Physics Programs @ sPHENIX

Run Plan (2023-2025)

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Year-1 (Au+Au): Commissioning, calibration, HI standard candle

Year-2 (pp & pAu): Reference for HI measurements & cold QCD measurements

Year-3 (Au+Au): High statistics HI

• Scientific mission of sPHENIX can be achieved with 3 years of running.

- Consistent with the currently envisioned Electron Ion Collider (EIC) schedule.
- If opportunity arises, additional runs can fully utilize the potential of the detector.

sPHENIX Detector

- High data rates: 15 kHz for all subdetectors
- 1.4 T Solenoid from BaBar
- Hermetic coverage: |η|<1.1
- Trigger capability also with streaming readout
- High resolution vertexing with MAPS Vertex detector (MVTX)
- Large acceptance hadronic support carriage calorimetry for jets

→ brings first b-jet tagging at RHIC w/ MVTX!!

sPHENIX Tracking Detectors

1/30 of ALICE TPC Volume

MVTX (2.3 < r < 3.9 cm): precision vertexing

- 3 layers Monolithic Active Pixel Sensors using ALICE ALPIDE. 30µm pitch.
- Nearest to collision point.
- <u>MAPS chip & stave test (华中师范,科大),</u> <u>simulation (科大,中山)</u>

INTT (6 < r < 12 cm): pileup separation

- 2 layers of silicon strips (86µm pitch)
- Fast integration time. Can resolve one beam crossing

TPC (20 < r < 78 cm): momentum measurement

• Very compact GEM-based TPC: 48 layers with gateless and continuous readout.

sPHENIX Calorimeters

Full Electromagnetic and Hadronic calorimeter system

- Large Acceptance: $|\eta| < 1.1$ and full 2π azimuthal coverage
- SiPM used for light collection & readout

EMCal

- Tungsten-scintillating fiber sampling calorimeter (SPACAL type). 18 X₀, 1 λ. Tower size: Δη x Δφ=0.025x0.025. Resolution ~ 16%/√E ⊕5%.
- <u>1248 blocks (|η|>0.85) will be made by 复旦/北大/原子能院.</u>

Inner HCal

Aluminum absorber plates and scintillating tiles with embedded WLS fibers

Outer HCal

- Steel absorber plates and scintillating tiles with embedded WLS fibers
- $\sigma_{\rm E}/{\rm E}$ < 100%/ $\sqrt{\rm E}$ (single particle) for overall HCal.

Upsilon R_{AA}

- Measuring centrality & p_T dependence of R_{AA} is critical to compare with LHC. sPHENIX will be able provide measurement overlapping with the LHC kinematic regions.
- Measuring Y(3S) modification will be challenging due to the large suppression. Feasibility checks ongoing for Y(3S) modification.

Jets & Photons

- High data rates & hermetic EMCal+HCal offer wide p_T range of jet recontruction.
- Precise measurements in low p_T as well as overlap with the LHC in high p_T region.
- Jet substructure as a probe for the QGP properties & connection to fundamental QCD.

Heavy Flavor R_{AA} & Flow

- Streaming readout allows us to measure $\mathsf{R}_{\mathsf{A}\mathsf{A}}$.
- Precise measurement of non-prompt-D⁰ suppression thanks to MVTX performance.
- Determine b-quark $R_{AA} \& v_2 \rightarrow$ clean access to diffusion at RHIC

DCA

B⁺

CPS-HEP第十三届全国粒子物理学术会议

Heavy Flavor Jet R_{AA}

- First b-tagging at RHIC thanks to MVTX & full calorimeter implementation.
 b-tag performance compatible to CMS.
- RHIC will have much less background (i.e. $g \rightarrow bb$) than LHC.
- Outstanding precision in low- p_T region. Enhanced sensitivity with dijet mass.

Cold QCD

- Access to transverse single spin asymmetry (TSSA) via prompt photon & D⁰.
 → gluon dynamics in transversely polarized nucleons.
- In pAu, measuring nuclear dependence of TSSA will offer insight to its origin (much improved precision from PHENIX).

Schedule

- At <u>the last stage of</u> <u>detector construction</u> (by the end of 2021).
- <u>1st Mock Data</u>
 <u>Challenge</u> (2021) for software development & validation.
- Detector installation & 2nd Mock Data Challenge in 2022.
- Data taking from 2023!

Toward the First Data Taking

- Will have another set of production later this year for Minbias & HF jet studies.
- 2nd Mock Data Challenge (MDC2) will follow next year.

1.7

250 É 200 1.75 1.8

m_{KK≖} [GeV]

sPHENIX Note sPH-HF-2021-001

m_{кк≖} [GeV]

CPS-HEP第十三届全国粒子物理学术会议

Summary

- sPHENIX is a state-of-the-art jet detector, the first new detector at RHIC in >20 years.
- sPHENIX brings high statistics measurements to jet production, jet substructure and open/hidden heavy flavors over unprecedented kinematic range at RHIC.
- sPHENIX will complete the scientific mission of RHIC along with STAR.
- 1st Mock Data Challenge has been successful to validate the full analysis framework. More production expected this year & preparing for 2nd Mock Data Challenge next year.
- Detector construction by end of this year (on schedule!) & installation next year.
- **Preparing for the first data taking in 2023!** Stay tuned!

Thank you for your attention! 谢谢大家!