

RHIC-STAR重离子碰撞实验中 集体运动的研究进展

施梳苏

华中师范大学 Central China Normal University

第十三届全国粒子物理学术会议, Aug. 16th – 19th

- > STAR experiment
- > Motivations
- Results and Discussions
- > Summary and Outlook

第十三届全国粒子物理学术会议, Aug. 16th – 19th

RHIC-STAR

Heavy ion collisions: 3 - 200 GeV

STAR

STAR Detectors

Anisotropic Flow

 $\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1} v_n \cos \left[n(\phi - \Psi_n) \right]$ Anisotropic flow v_1 : directed flow; v_2 : elliptic flow; v_3 : triangular flow

 ➢ Anisotropic flow: Sensitive to the early stage of the collision
 ➢ Multi-strange hadrons and φ meson: Less sensitive to late hadronic rescatterings
 ➢ Heavy flavor flow Study medium properties from motion of heavy guarks in medium

Beam Energy Scan

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
54.4	1000	2017		92	165
39	130	2010		112	164
27	70 (<mark>1000</mark>)	2011(2018)		156	162
19.6	580 / 36	2019 / 2011	3	206	160
14.5	325 / 20	2019 / 2014	2.5	264	156
11.5	235 / 12	2020 / 2010	5	315	152
9.2	165 / 0.3	2020 / 2008	9.5	355	140
7.7	100 / 4	2021 / 2010	14	420	139

Fixed target program: 3.0 – 7.7 GeV extends STAR's physics reach to region of compressed baryonic matter

Collectivity of Heavy Quarks

D_s/D₀: strangeness enhancement + charm quark coalescence

- NCQ scaling holds:
 Partonic collectivity in the initial stage
- > Violation of mass ordering for \overline{p} and ϕ Effect of hadronic interaction on \overline{p} v₂

STAR: Phys. Rev. Lett 116, 062301(2016) SQM2021

第十三届全国粒子物理学术会议, Aug. 16th – 19th

v₁: ϕ Mesons

Mesons and all anti-baryons show negative slope except \$\phi\$ mesons when collisions energy < 14.5 GeV</p>

Change of medium property? High precision data needed: BESII

STAR: Phys. Rev. Lett. 120, 062301(2018)

第十三届全国粒子物理学术会议, Aug. 16th – 19th

Δv₁/dy shows large divergence between net-kaon and net-proton (net-Λ) below √s_{NN} < 20 GeV: Hydro calculation + 1st-order phase transition consistent with net-proton results STAR: Phys. Rev. Lett. 120, 062301(2018); Phys. Rev. Lett. 112, 162301(2014) H. Stoecker, Nucl. Phys. A 750, 121(2005)

v₂ Difference

- > Particle and anti-particle v₂ differences increase dramatically below $\sqrt{s_{NN}} < 20 \text{ GeV}$
- Model comparison
 - Hydro + Transport (UrQMD): consistent with baryon data
 - Nambu-Jona-Lasino (NJL) model (partonic + hadronic potential): hadron splitting consistent
 - Analytical hydrodynamic solution:

J. Steinheimer et al., PRC86, 44903(2012); J. Xu et al., PRL112, 012301(2014), H. Liu et al., PLB798, 135002(2019).;

Y. Hatta et al., PRD92, 114010(2015)

Multi-strange Hadron and ϕ Meson v₂ ($\textcircled{$

- \blacktriangleright BESI: v₂ of multi-strange hadrons and ϕ mesons seems dropping when collision energy < 20 GeV
- > BESII: precise measurements will offer information on partonic vs. hadronic degree of freedom: QCD phase structure

BESII : multi-strange hadrons and φ meson

第十三届全国粒子物理学术会议, Aug. 16th – 19th

Better NCQ scaling achieved at 39 GeV (up to 0.8 GeV/c²) and 200 GeV (up to 0.8 GeV/c²) by using scaling factor $n_q^{3/2}$

第十三届全国粒子物理学术会议, Aug. 16th – 19th

- NCQ scaling at high energy(200, 54.4, 39 and 27 GeV) -> Partonic collectivity
- NCQ scaling breaks at 3 GeV: new medium properties and an EoS dominated by baryonic interactions

STAR: arXiv:2108.00908; 兰少位, CPOD2021

FXT: 3 GeV

- The data are qualitatively consistent with hadronic transport models (JAM and UrQMD) with baryonic mean-field
 - The dominant degrees of freedom at 3 GeV are hadrons

STAR: arXiv:2108.00908; 兰少位, CPOD2021

第十三届全国粒子物理学术会议, Aug. 16th – 19th

- > Top Energy Collisions
 - > Partonic collectivity: *light flavor to charm*
- Beam Energy Scan
 - v₁ slope of net-baryon: non-monotonic as energy
 - ➢ φ meson and multi-strange v_n: partonic vs. hadronic
 - > 3 GeV: EoS dominated by hadronic interactions

BESII: RHIC 2019 – 2021

BESIII: RHIC FAIR/NICA/HIAF 2022 –

Explore QCD phase structure!

BES-II

Electron cooling + longer beam bunches for BES-II factor 4-15 improvement in luminosity compared with BES-I

Detector upgrade

Event Plane Detector

forward EP and centrality definition: important for flow and fluctuation analyses

iTPC upgrade

increases TPC acceptance to ~1.7 in η ; improves dE/dx resolution

ETOF upgrade

New charged hadron PID capabilities for $1.1 < |\eta| < 1.6$

RHIC BES-II: 2019-2021

 $\begin{array}{l} 19.6 \; \text{GeV} \; (580 \; \text{M}), \\ 14.5 \; \text{GeV} \; (325 \; \text{M}), \\ 11.5 \; \text{GeV} \; (235 \; \text{M}), \\ 9.2 \; \text{GeV} \; (165 \; \text{M}) \\ 7.7 \; \text{GeV} \; (100 \; \text{M}) \\ \textbf{FXT} \; \textbf{3} \; \textbf{GeV} \; (1.8 \; \textbf{B}) \\ \textbf{Focus on } \sqrt{s_{\text{NN}}} \leq 20 \; \text{GeV} \; \textbf{region} \\ \textbf{Successfully completed} \end{array}$