Search for a generic heavy Higgs at LHC

Xin Chen, Yue Xu

Tsinghua University Qingdao, Online August 16, 2021

5

PLB 804 (2020) 135358

Overview

- 1. Introduction
- 2. Interactions and physics processes
- 3. Signal regions
 - Same-sign dilepton (SS-dilepton)
 - Opposite-sign dilepton (OS-dilepton)
 - Trilepton
- 4. 95% confidence level Exclusion
- 5. Summary

Introduction

- Many BSM predict heavy Higgs particles decaying to heavy quarks or bosons
 - 2HDM, MSSM...
- ATLAS and CMS have some researches on heavy Higgs boson
 - gluon-gluon fusion (ggF)
 - Vector-boson fusion (VBF)
 - Associated production with vector boson (VH)

• $H \rightarrow ZZ \rightarrow 4\ell$ research in ATLAS. Eur.Phys.J.C 78 (2018) 4, 293

X → *WW* research in CMS.
 <u>JHEP 2020, 34 (2020)</u>

Interactions

- Multiple Higgs field: one SM-like light Higgs (h) and one generic neutral heavy Higgs (H)
- A generic heavy Higgs: generic means model-independent, has both dim-4 and effective dim-6 interactions with SM particles.
- The dim-6 operators significantly enhance the Higgs momentum
- Only consider these four dim-6 operators, since we just consider the coupling between heavy Higgs and vector bosons(W/Z) and the rest is constrained by electroweak precision data or not relevant for the heavy Higgs.

dim-4 operator Lagrangian

$$\mathcal{L}_{hWW}^{(4)} = \rho_h g m_W h W^\mu W_\mu$$

$$\mathcal{L}_{hZZ}^{(4)} = \rho_h \frac{g m_W}{2 cos^2 \theta_W} h Z^\mu Z_\mu$$

$$\mathcal{L}_{HWW}^{(4)} = \rho_H g m_W H W^\mu W_\mu$$

$$\mathcal{L}_{HZZ}^{(4)} = \rho_H \frac{g m_W}{2 cos^2 \theta_W} H Z^\mu Z_\mu$$

$$\rho_h = \frac{g_h^2 \nu_h}{g^2 \nu}, \quad \rho_H = \frac{g_H^2 \nu_H}{g^2 \nu}$$

 ν_h and ν_H : VEVs , g_h and g_H : gauge couplings

PLB 804 (2020) 135358

 $\begin{aligned} \dim -6 \text{ effective operator Lagrangian} \\ \mathcal{L}_{HVV}^{(6)} &= \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n, \quad \Lambda = 5TeV \\ \mathcal{L}_{HWW}^{(6)} &= \rho_H g m_W \frac{f_W}{2\Lambda^2} (W_{\mu\nu}^+ W^{-\mu} \partial^\nu H + h.c.) \\ &- \rho_H g m_W \frac{f_{WW}}{\Lambda^2} W_{\mu\nu}^+ W^{-\mu\nu} H \\ \mathcal{L}_{HZZ}^{(6)} &= \rho_H g m_W \frac{c^2 f_W + s^2 f_B}{2c^2 \Lambda^2} Z_{\mu\nu} Z^\mu \partial^\nu H \\ &- \rho_H h m_W \frac{c^4 f_{WW} + s^4 f_{BB}}{2c^2 \Lambda^2} Z_{\mu\nu} Z^{\mu\nu} H \\ &s = sin \theta_W, \quad c = cos \theta_W \end{aligned}$

Interactions

- f_W , f_{WW} , f_B , f_{BB} , ρ_H , ρ_h are the relevant parameters. f_B and f_{BB} are set to 0 to neglect terms of $O(s^2)$ and $O(s^4)$
- Take ρ_h =1 and ρ_H =0.05 as benchmark value, fixed. Since the mass of gauge boson should be equal to SM mass

$$\rho_h \frac{\nu_h}{\nu} + \rho_H \frac{\nu_H}{\nu} + \dots = 1$$

- Only m_H , f_w and f_{ww} are free parameters
- Then the operators in slide 4 become:

$$\mathcal{L}_{hWW}^{(4)} = \rho_h g m_W h W^\mu W_\mu$$
$$\mathcal{L}_{hZZ}^{(4)} = \rho_h \frac{g m_W}{2 \cos^2 \theta_W} h Z^\mu Z_\mu$$
$$\mathcal{L}_{HWW}^{(4)} = \rho_H g m_W H W^\mu W_\mu$$
$$\mathcal{L}_{HZZ}^{(4)} = \rho_H \frac{g m_W}{2 \cos^2 \theta_W} H Z^\mu Z_\mu$$

$$\mathcal{L}_{HWW}^{(6)} = \rho_H g m_W \frac{f_W}{2\Lambda^2} \left(W_{\mu\nu}^+ W^{-\mu} \partial^{\nu} H + h.c. \right)$$
$$-\rho_H g m_W \frac{f_{WW}}{\Lambda^2} W_{\mu\nu}^+ W^{-\mu\nu} H,$$
$$\mathcal{L}_{HZZ}^{(6)} = \rho_H g m_W \frac{c^2 f_W}{2c^2 \Lambda^2} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H$$
$$-\rho_H g m_W \frac{c^4 f_{WW}}{2c^2 \Lambda^2} Z_{\mu\nu} Z^{\mu\nu} H$$

Physics process

- The associated VH(V=W/Z) production is considered, the V/H is boosted due to dim-6 operators.
 - Assume that Yukawa coupling between heavy Higgs and fermions is very small, so it can escape the direct production in gluon-fusion channel
 - Vector boson fusion(VBF) is NOT considered because of accompanied by large background
 - Some traditional variables e.g. $\Delta \eta_{jj}$ become more background-like due to dim-6 operators.

Physics process

- Three final states are interested
 - SS-dilepton: 2 same-sign lepton final state with two neutrinos from WWW, e.g. p p
 W+ H, W+ > I+ vI, H > I+ vI j j
 - OS-dilepton: 2 opposite-sign lepton final state without neutrino, e.g. p p> Z H, Z > I+ I-, H > j j j j
 - **Trilepton**: 3 lepton final state with one neutrino, e.g. p p > Z H, Z > I+ I-, H > I+ vI j j
- We don't study zero-lepton and one-lepton final state, because they are accompanied by large bkg. and the signal significance is very low

Signal regions: SS-dilepton

• SS-dilepton region:

1.
$$V_0 H \to l^{\pm} \nu_{l^{\pm}} + V_1 (l^{\pm} \nu_{l^{\pm}}) V_2$$
(jet)

2. $V_0 H \to l^{\pm} \nu_{l^{\pm}} + V_1 (l^{\pm} \nu_{l^{\pm}}) V_2 (\text{fatjet})$

3.
$$V_0 H \to l^{\pm} \nu_{l^{\pm}} + V_1 (l^{\pm} \nu_{l^{\pm}}) V_2 (\text{jet + jet})$$

region (1)	region (2)	
$m_{\ell\ell}$ > 300 GeV, $p_T^{\ell\ell}$ > 100 GeV,		
$p_T^{\ell_1} > 300$ GeV, $p_T^{\ell_2} > 50$ GeV,		
$\Delta \phi_{\ell\ell} > 2.0$, $E_T^{ m miss} > 100$ GeV,		
no <i>b</i> -tagged jets		
$p_T^{j_1} > 400 \text{ GeV}$	$p_T^J > 100 { m GeV}, \ au_2^J/ au_1^J < 0.6$	
region (3)		
$m_{\ell\ell} > 400 \text{ GeV}, \ p_T^{\ell\ell} > 100 \text{ GeV}, \ p_T^{\ell_1} > 450 \text{ GeV}, \ p_T^{\ell_2} > 50 \text{ GeV}, \ \Delta \phi_{\ell\ell} > 1.6, \ E_T^{\text{miss}} > 100 \text{ GeV}$		

Iarge-R jet (fatjet) small-R jet

Signal regions: OS-dilepton

• OS-dilepton region:

	region (1)	region (2)
1. $V_0H \rightarrow l^-l^+ + V_1$ (subjet of leading fatjet) V_2 (subjet of leading	fatjet) 80 GeV < m_{ℓ}	ℓ < 100 GeV
2. $V_0H \rightarrow l^-l^+ + V_1(\text{jet})V_2(\text{jet} + \text{jet})$	$p_T^{\ell\ell} > 950 \text{ GeV},$ $p_T^J > 750 \text{ GeV},$ $N_{si} = 2,$	$p_T^{\ell\ell} > 550 \text{ GeV},$ $p_T^{j_1} > 300 \text{ GeV},$ 70 GeV < $m_{j_1} < 150 \text{ GeV},$
3. $V_0H \rightarrow \text{jet} + V_1(l^-l^+)V_2(\text{jet} + \text{jet})$	70 GeV $< m_{sj_{1,2}} < 150$ GeV, $\tau_2^{\ J} / \tau_1^{\ J} < 0.45$	$\tau_2^{j_1}/\tau_1^{j_1} < 0.40,$ 70 GeV < $m_{j_{23}} < 110$ GeV, $n^{j_{23}} > 150$ GeV
4. $V_0 H \to \text{jet} + V_1 (l^- l^+) V_2 (\text{jet})$		$p_T > 150 \text{ GeV},$ $\Delta R(j_1, j_{23}) < \Delta R(\ell \ell, j_1),$ $\Delta R(j_1, j_{23}) < \Delta R(\ell \ell, j_{23}),$ $p_T^{j_1+j_{23}} > 550 \text{ GeV}$
	region (3)	region (4)
	80 GeV $< m_{\ell\ell} <$ 100 $p_T^{j_1} >$ 700 GeV, 70 G	GeV, $p_T^{\ell\ell}$ > 300 GeV, eV $< m_{j_1} < 150$ GeV
$J (1) \qquad j_2 j_3 \qquad j_1 (2)$ $j_1 \qquad \qquad$	$\begin{aligned} &\tau_{2}^{j_{1}}/\tau_{1}^{j_{1}} < 0.60, \\ &75 \text{ GeV} < m_{j_{23}} < 115 \text{ GeV}, \\ &p_{T}^{j_{23}} > 50 \text{ GeV}, \\ &\Delta R(\ell\ell, j_{23}) < \Delta R(j_{1}, \ell\ell), \\ &\Delta R(\ell\ell, j_{23}) < \Delta R(j_{1}, j_{23}), \\ &p_{T}^{\ell\ell+j_{23}} > 700 \text{ GeV} \end{aligned}$	$\begin{aligned} &\tau_{2}^{j_{1}}/\tau_{1}^{j_{1}} < 0.52, \\ &p_{T}^{j_{2}} > 250 \text{ GeV}, \\ &70 \text{ GeV} < m_{j_{2}} < 150 \text{ GeV}, \\ &\tau_{2}^{j_{2}}/\tau_{1}^{j_{2}} < 0.52, \\ &\Delta R(\ell\ell, j_{2}) < \Delta R(j_{1}, \ell\ell), \\ &\Delta R(\ell\ell, j_{2}) < \Delta R(j_{1}, j_{2}), \\ &\ell\ell + i_{2} \end{aligned}$
$j_{2} j_{3} = l^{+}$ (3) $j_{2} = l^{+} l^{-}$ (4)		$p_T^{cc+J_2} > 700 \text{ GeV}$

1		
₽	3	
	-	4

Signal regions: Trilepton

- Trilepton region:
 - 1. $V_0 H \rightarrow l^{\pm} \nu_{l^{\pm}} + V_1 (l^+ l^-) V_2 (\text{jet})$
 - 2. $V_0H \rightarrow l^{\pm}\nu_{l^{\pm}} + V_1(l^+l^-)V_2(\text{fatjet})$
 - 3. $V_0H \rightarrow l^{\pm}\nu_{l^{\pm}} + V_1(l^+l^-)V_2(\text{jet + jet})$
 - 4. $V_0 H \rightarrow l^+ l^- + V_1 (l^\pm \nu_{l^\pm}) V_2$ (jet)
 - 5. $V_0 H \rightarrow l^+ l^- + V_1 (l^\pm \nu_{l^\pm}) V_2$ (fatjet)
 - 6. $V_0 H \rightarrow l^+ l^- + V_1 (l^\pm \nu_{l^\pm}) V_2 (\text{jet + jet})$

region (1)	region (4)		
$p_T^{\ell u} > 600 \mathrm{GeV}$	$p_T^{\ell\ell} > 600 { m GeV}$		
80 GeV < $m_{\ell\ell}$ < 100 GeV,			
60 GeV $< m_{j_1} <$ 160 GeV, $ au_2^{j_1}/ au_1^{j_1} <$ 0.60			
$\Delta R(\ell \ell, j_1) < \Delta R(\ell \nu, \ell \ell),$	$\Delta R(\ell \nu, j_1) < \Delta R(\ell \ell, \ell \nu),$		
$\Delta R(\ell \ell, j_1) < \Delta R(\ell \nu, j_1),$	$\Delta R(\ell \nu, j_1) < \Delta R(\ell \ell, j_1),$		
$p_T^{\ell\ell+J_1} > 600 \text{ GeV}$	$p_T^{\ell \nu + J_1} > 600 \text{ GeV}$		
region (2)	region (5)		
$p_T^{\ell v} > 600 \text{ GeV}$	$p_T^{\ell\ell} > 600 { m GeV}$		
80 GeV $< m_{\ell\ell} < 100$) GeV,		
70 GeV $< m_J <$ 140 GeV, $ au_2^{~J}/ au_1^{~J} <$ 0.50			
$\Delta R(\ell \ell, J) < \Delta R(\ell \nu, \ell \ell),$	$\Delta R(\ell\nu,J) < \Delta R(\ell\ell,\ell\nu),$		
$\Delta R(\ell\ell, J) < \Delta R(\ell\nu, J),$	$\Delta R(\ell \nu, J) < \Delta R(\ell \ell, J),$		
$p_T^{\ell\ell+J} > 600 \text{ GeV}$	$p_T^{\ell \nu + J} > 600 \text{ GeV}$		
region (3)	region (6)		
$p_T^{\ell v} > 600 \text{ GeV}$	$p_T^{\ell\ell} > 600 { m GeV}$		
80 GeV $< m_{\ell\ell} < 100$) GeV,		
60 GeV $< m_{j_{12}} < 12$	0 GeV		
$\Delta R(\ell \ell, j_{12}) < \Delta R(\ell \nu, \ell \ell),$	$\Delta R(\ell\nu,j_{12}) < \Delta R(\ell\ell,\ell\nu),$		
$\Delta R(\ell\ell, j_{12}) < \Delta R(\ell\nu, j_{12}),$	$\Delta R(\ell\nu,j_{12}) < \Delta R(\ell\ell,j_{12}),$		
$p_T^{\ell\ell+j_{12}} > 600 \text{ GeV}$	$p_T^{\ell \nu + j_{12}} > 600 \text{ GeV}$		
l v	l^+ l^-		
\setminus	\setminus		
X			
$j_{1} + j_{1} + j_{1}$	j_{1} j_{1} (6)		
i i j_2	$V I = \int_{2}^{1} I(z)$		

Distributions and Yields

- Distributions and yields with phenomenology study with signal point $m_{H} = 600$ GeV, $\rho_{H} = 0.05$, $f_{W} = f_{WW} = 1000$

2ℓ OS chan.	Signal	Z+QCD jets	Other
	4.0	41.6	3.5
3ℓ chan.	Signal	<i>W Z</i> +QCD jets	Other
	3.6	7.2	1.3
2ℓ SS chan.	Signal	WZ+QCD jets	Other
	11.4	4.1	3.1

95% Confidence Level Exclusion

• The mass of gauge boson is equal to SM mass: $\rho_h \frac{\nu_h}{\nu} + \rho_H \frac{\nu_H}{\nu} + \ldots = 1$

- Take $\rho_h = 1$ and $\rho_H = 0.05$ as benchmark value.
- Get confidence level (CL) of each parameter point by "template" fits with a large quantity of toy experiments.

Summary

- Two and three lepton final states are considered
- SM background can be suppressed by appling of boosted boson jets
- We focus on dim-6 operator effect and the dim-4 effect is small
- A big part of parameter space which is among unitarity bound can be excluded
- This part of phase space is waiting for discovery

Thanks