

Collectivity arising from interference in small and large systems with HBT suppressions

Peng Ru / 茹艽

Institute of Quantum Matter, South China Normal University

PR, G. Bary, Wei-Ning Zhang, PLB 777 (2018) 79-85 **PR**, W. -N. Zhang, PLB 809 (2020) 135699 & in preparation p.r

2021.08.18 Qingdao p.ru@m.scnu.edu.cn

Collectivity from coherent and chaotic emissions

Antenna Arrays: transform spatial anisotropy to momentum by interference

Fig. 22.3.4 Azimuthal gain patterns of two-dimensional array.

Light bulb: thermal emission with momentum isotropy

Peng Ru, South China Normal University 2021.08.18

Questions

- Can there be any coherence present from small to large systems of nuclear collisions?
 - What if coherent source expand relativistically?
- How to measure the coherent fraction in small and large systems?

Nagle, et al. ARNPS(2018)

Success of hydrodynamics

Well describe flow observables in large systems

Even work in small systems

Transport models like AMPT also work well. AMPT also includes only chaotic emissions.

Perspective from HBT correlations

Hydrodynamic model describes HBT radii in small and large systems.

Shapoval, et al, PLB(2013)

Peng Ru, South China Normal University 2021.08.18

.5.

Perspective from HBT correlations

Suppressed HBT strengths indicate possible coherence.

Peng Ru, South China Normal University 2021.08.18

.6.

Possible coherence in nuclear collisions

Radiation field of a classical source

$$\left(\Box + m_{\pi}^{2}\right)\phi(x) = \rho(x)$$

$$\phi_{\pi}\rangle = e^{-\bar{n}/2}\exp\left(i\int d^{3}p \,\mathcal{A}(\boldsymbol{p})a^{\dagger}(\boldsymbol{p})\right)|0\rangle$$

0

Laser-like emission of particle

M. Gyulassy, et al. PRC(1979) R. Glauber, NPA(2006) (QM05)

Similarly, Schwinger model of particle production, see, e.g. C.-Y. Wong, Introduction to high-energy HIC

Smaller size, more quantum mechanical

Coherence and v_n from uncertainty principle Shapoval, et al, PLB(2013) P=500MeV, λ ~0.4fm D. Molnar, F. Wang, C. Greene, 1404.4119

Bose-Einstein Condensate

Pion? Gluon? DCC? Overpopulation?.....

Symmetry broken in momentum space

Clark, et al., Collective emission of matter-wave jets from driven Bose–Einstein condensates, Nature(2017)

CGC / Glasma

Glasma evolution by B. Schenke _{t = 0.0 fm/}

T. Lappi, B. Schenke, S. Schlichting, R. Venugopalan, JHEP01(2016)061. C. Zhang, C. Marquet, G. Y. Qin, S. Y. Wei and B. W. Xiao, PRL122, 172302 (2019).

Collectivity and effects of source expansion

Two types of pion-emitting source

Coherent: classical source radiation $E_p P_c(\mathbf{p}) = E_p \left| \int d^4x \, e^{ip \cdot x} \, \rho(x) \, A_c(x, \mathbf{p}) \right|^2$

> **Chaotic: thermal emission** $E_p P_{\chi}(\boldsymbol{p}) = E_p \int d^4x \, \rho(x) \, |A_{\chi}(x, \boldsymbol{p})|^2.$

Coherent emission is more sensitive to the geometry of the source at initial time, but not sensitive to the source transverse expansion.

Effects of source transverse expansion

Effects of coherent source size

PR, G. Bary, W. -N. Zhang, PLB(2018)

Collectivity and effects of source expansion

Ridge and effects of Bjorken longitudinal expansion

PR, W. -N. Zhang, PLB(2020)

Ridge is related to the interference pattern in momentum space. Rapidity distribution of coherent emission is sensitive to the longitudinal expansion.

Coherent emission plus hydrodynamic background

Peng Ru, South China Normal University 2021.08.18

.10.

Coherence & HBT correlations

Quantum statistical correlations

2 identical particles No interaction Thermal equilibrium

N identical particles Ideal gas Thermal equilibrium

Off-equilibrium, relativistic, Dynamically evolving, Interactions, coherence

$$\rho^{(1)}(r) = \frac{1}{V} \qquad \rho^{(2)}(r_1, r_2) = \frac{1}{V^2} [1 \pm \exp(-\frac{2\pi r_{12}^2}{\lambda^2})]$$

$$C^{(2)}(r_1, r_2) = \frac{\rho^{(2)}(r_1, r_2)}{\rho^{(1)}(r_1)\rho^{(1)}(r_2)} = 1 \pm \exp(-\frac{2\pi r_{12}^2}{\lambda^2})$$
(Identical particle)
$$\lambda = h/(2\pi m k_B T)^{1/2}$$
Spatial -- Momentum
$$C(q) \text{ Bose-Einstein}$$

$$C(q) \text{ Bose-Eins$$

Coherence & HBT correlations

Figure 2. Picture of the two telescopes used in the HBT experiments. The figure was extracted from Ref.[1].

Hanbury Brown, Twiss, Nature (London) 177, 27 (1956).

Coherence & HBT correlations

HBT: an old subject in future

Femtoscopy: probe hadron interactions

Pair separation, Δz (mm)

.13.

Summary

- Collectivity can arise from interference in coherent emission of particles, where ridge is an interference pattern in momentum space.
- Coherence may play more important roles in smaller systems.
- Azimuthal correlations in coherent emission are insensitive to source expansion. Rapidity distribution is sensitive to Bjorken expansion.
- A joint study of flow and HBT correlation function may help understand coherence and collectivity in small and large nuclear collisions systems.

Coherent

Partially coherent

Thank you for your attentions! Thank the organizers!

图 6.8 部分相干源模型中的混沌部分和相干部分对结果的贡献。其中,左图为π介子的横动量谱,中图为π介子的v₂(p_T)。右图为部分相干源π介子发射的相干性分数。

图 6.9 不同相干性分数的部分相干源模型结果与实验数据的对比。其中,左图为π介子的横动量 谱,中图为π介子的v₂(p_T),右图为π介子的相干性分数。图中实验数据与图 6.7 一致。

Trends of coherent fraction as a function of pT similar as the experimental measurement.

Azimuthal anisotropies in p + Pb collisions from classical Yang–Mills dynamics

B. Schenke, et al., PLB 747 (2015) 76-82

Single- or multi-coherent source ?

