

Search for resonances decaying to three W bosons with CMS

Xudong Lyu (Peking University) On behalf of the CMS Collaboration

August 16, 2021

中国物理学会高能物理分会第十三届全国粒子物理学术会议

Outline

CMS-PAS-B2G-20-001

- 1. Motivation
- 2. Single lepton final state (1-lep)
 - Signal Region selection
 - Deep-taggers calibration
 - Prediction method
- 3. Full hadronic final states (0-lep) CMS-PAS-B2G-21-002
 - Signal Region selection
 - Prediction method
- 4. Results

Motivation for "tri-object" search

- M_{Pl}-EW scale gap motivates BSM physics (hierarchy problem)
- No BSM physics yet \rightarrow time to look at non-standard final states/scenarios

Standard (Minimal) Warped ED model

- 2 Branes in Bulk (in the RS framework)
- Everything propagates to the same bulk
- Constrained by LHC searches

• "di-SM" dominant phenomenology

Extended Warped ED model:

- Extra brane by splitting→ Extended Bulk
 3 branes
- Various fields propagate in diff. regions

- A wealth of new signatures emerges
- "di-SM" suppressed in favor of "tri-SM"

arXiv:1711.09920 arXiv:1612.00047 arXiv:1809.07334

Motivation for "tri-object" search

• Only EW in extended bulk \rightarrow dominant: $V_{KK} \rightarrow R V \rightarrow VVV$

- Hierarchy of Radion BR_R : WW > ZZ > Z γ > $\gamma\gamma$
- $W_{KK} \rightarrow R W \rightarrow WWW$
- Doubly resonant signal: spin-1 V_{KK} , spin-0 radion R
- 1- and 0-lep. largest BRs ~40%
- Both1-lep and 0-lep channel are investigated for the first time.

Signal Profile (1-lep)

- Physics objects reconstruction
 - ▶ hadronic W bosons: jets (Probe **Resolved** in $N_j=2$, and **Merged** $N_j=1$ selections)
 - > leptonic W boson: use info. of lep and MET, assume M_W =80 GeV
- Define selections to improve significance
- Background estimation
- Search of a peak over the reconstructed: M_{jlv} , M_{jjlv}

Jet tagging with deepAK8 framework

According to the signal topology, we use two taggers:

Selection (1-lep)

- 1-lepton channel with BR of 42%: $W_{KK} \rightarrow WWW \rightarrow l + v + jets$
- Split to 6 signal regions based on:
- Merged: (SR1-3)
 - single massive large-radius jet
 - Bin over M_R : 60-100, 100-200, >200 GeV
 - \circ For 60 < M_j < 100 GeV, use deep-W
 - For Mj > 100 GeV, use deep-WH to tag radion
- Resolved: (SR4-6)
 - 2 jets, ordered due to mass M_j^{max}: 60-100 GeV M_j^{min}:0-60-100 GeV binning
 - For $60 < M_j < 100$ GeV, use deep-W

Region	m _j ^{max} [GeV]	taggers	m _j ^{min} [GeV]	tagger	N _j AK8	N _j AK4	N _b
SR1	60–100	deep-W > 0.7	_	—	1	≤ 2	0
SR2	100-200	deep-WH > 0.7	_	_	1	≤ 2	0
SR3	≥ 200	deep-WH > 0.7	_	_	1	≤ 2	0
SR4	60–100	deep-W > 0.5	60–100	deep-W > 0.5	2	≤ 2	0
SR5	60–100	deep-W >(<) 0.5	60–100	deep-W <(>) 0.5	2	≤ 2	0
SR6	60–100	deep-W > 0.7	0-60	_	2	≤ 2	0

DeepAK8 tagger calibration

• Calibrate deep tagger discriminant shape using SM objects:

• Split each sample into 3 pure subsets and correct MC shapes bin by bin to derive scale factors for each SM object (details in backup)

DeepAK8 tagger calibration

All SFs derived for all 4 bins (2 Mj , 2 pTj bins) and for all types of jets W, t^2 , $t^{3,4}$, g/q

A large set of validation tests showed **good post SFs-correction performance** We **use these SFs to correct all jets** for both signal and BKG

Calibration for signal

Control region for W+jets

• Use SR-selection

 \rightarrow Maintain kinematics as in SR

- Invert deep-W(WH) tagger cuts \rightarrow Signal free samples with large statistics
- Reject tops: deep-t<0.4

 \rightarrow Enhance W+jets purity (rejecting top)

Region	$m_{\rm j}^{\rm max} [{ m GeV}]$	taggers	<i>m</i> _j ^{min} [GeV]	tagger	N ^{AK8}	N _j ^{AK4}	N _b
CRW1	60–100	deep-W(t) $< 0.7(0.4)$	—	_	1	≤ 2	0
CRW2	100–200	deep-WH(t) < 0.7(0.4)	—	—	1	≤ 2	0
CRW3	≥ 200	deep-WH(t)< 0.7(0.4)	—	—	1	≤ 2	0
CRW456	60–100	deep- $W(t) < 0.5/0.7(0.4)$	60–100/0–60	deep-W < 0.5/—	2	≤ 2	0

- SR^{MC}, CR^{MC}, CR^{DATA-Rest} have consistent $M_{j(j)lv}$ shapes
- Use the CR to deliver rate $(N_{CR_i}^W)$ and shape (TF_i^W) correction to SR as:

$$PRED_{SR_{i}}^{W} = N_{CR_{i}}^{W} MC_{SR_{i}}^{W} \frac{[DATA-rest]_{CRW_{i}}}{N_{CR_{i}}^{W} MC_{CRt_{i}}^{W}} = N_{CR_{i}}^{W} MC_{SR_{i}}^{W} TF_{i}^{W}$$

$$0.96 \text{ to } 1.03$$

Prediction for top is similar, we invert b-veto selection as top control region.

We have 4 such CRWs (in accordance with SR1-6); we illustrate only the CRW456 here.

Results and limit (1-lep)

• Combined fit of six signal regions. (No excess over the background estimation is observed.)

• Limits in 2D W_{KK} vs. R mass plane.

Signal Profile (0-lep)

> Clear objective:

Hunt a resonance formed by 3 or 2 massive jets

Resolved \rightarrow 3 AK8 jets \rightarrow search for resonance at M_{jjj} Merged \rightarrow 2 AK8 jets \rightarrow search for resonance at M_{jj}

SR definition

Jets ordered due to mass

SR4 and SR5 differ in demanding exactly 3 and 2 W-tagged jets respectively

Region	Nj	m _j ^{max} (GeV)	$m_{\rm j}^{\rm mid}$ (GeV)	m _j ^{min} (GeV)	Jet tagging conditions
SR1	2	70–100		70–100	Both with deep-W > 0.8
SR2	2	100-200		70–100	Higher with deep-WH > 0.8 , lower with deep-W > 0.8
SR3	2	>200		70–100	Higher with deep-WH > 0.8 , lower with deep-W > 0.8
SR4	3	70–100	70–100	60–100	All three with deep-W > 0.6
SR5	3	70–100	70–100	60–100	Exactly two with deep-W > 0.6
SR6	3	70–100	70–100	0–60	Two highest with deep-W > 0.8

BKG prediction

deep-W^{max}

0.4

Combined results

We set upper limits on $X \rightarrow RW \rightarrow WWW$ cross section, lower limits on M_{WKK}, M_R masses (Asymptotic approximation)

Combination of 1+0 lep. Systematics on SFs correlated (apart from SFq/g), as well as PU, PDFs, μR, μF are correlated All the rest uncorrelated.

Summary

- First search for 3 massive W boson resonances
- Probe very **recent** (2017-2019) theoretical scenario
- Search features:
 - Simultaneous probe of both merged and resolved
 - Featuring discovery potential
 - Extensive use of deep-AK8 taggers
 - Novel tagger calibration with "matrix method"
 - Exclusion limits up to ~3.7 TeV

Backup

Matrix method

- Focus at LL sample with W, t², g/q (left plot of last slides)
- Split the samples into 3 pure subsets

 (applying cuts on τ_{ij}, deep-x/y, N_b, m_j)
 in a way where each subset is
 dominated by a single type of jets
 → mismodeling revealed
- 3. Demand: **Data = scaled sum of yields**

 $D_{i,k} = (g_{i,k})SF_k^g + (w_{i,k})SF_k^W + (t_{i,k})SF_k^t + d_{i,k}$

Define system of 3 equations, 1 per each subset "i", and per tagger score bin "k"

- 4. Solve a 3x3 system for SFs per each tagger score bin and get SFs→
 - Known yields: D, W, t, g/q, d
 - Unknown SFs

16/8/21

Matching criteria

CMS-PAS-B2G-20-001

CR for W+jets

• Use SR-selection

- \rightarrow Maintain kinematics as in SR
- Invert deep-W(WH) tagger cuts \rightarrow Signal free samples with large statistics
- Reject tops: deep-t<0.4

→ Enhance W+jets purity (rejecting top)

Region	$m_{\rm j}^{\rm max} [{ m GeV}]$	taggers	$m_{\rm j}^{\rm min} [{\rm GeV}]$	tagger	N _j ^{AK8}	N _j ^{AK4}	N _b
CRW1	60–100	deep-W(t) $< 0.7(0.4)$	—	_	1	≤ 2	0
CRW2	100–200	deep-WH(t) < 0.7(0.4)	—	—	1	≤ 2	0
CRW3	≥ 200	deep-WH(t)< 0.7(0.4)	—	—	1	≤ 2	0
CRW456	60–100	deep- $W(t) < 0.5/0.7(0.4)$	60-100/0-60	deep-W < 0.5/—	2	≤ 2	0

We have 4 such CRWs (in accordance with SR1-6); we illustrate only the CRW456 here.

SR^{MC}, CR^{MC}, CR^{DATA-Rest} have consistent $M_{i(j)lv}$ shapes

CMS-PAS-B2G-20-001

• Use the CR to deliver rate $(N_{CR_i}^W)$ and shape (TF_i^W) correction to SR as:

$$PRED_{SR_{i}}^{W} = N_{CR_{i}}^{W} MC_{SR_{i}}^{W} \frac{[DATA - rest]_{CRW_{i}}}{N_{CR_{i}}^{W} MC_{CRt_{i}}^{W}} = N_{CR_{i}}^{W} MC_{SR_{i}}^{W} TF_{i}^{W}$$

$$0.96 \text{ to } 1.03$$

(Where MC is SF-corrected) We **validate** prediction in low-ST samples

CR for top

- Use SR-selection
- Invert b-veto to $N_b \ge 1$
- Remove tagger cuts: deep-W(WH)>0 \rightarrow Enhance statistics

Region	$m_{\rm j}^{\rm max} [{ m GeV}]$	taggers	$m_{\rm j}^{\rm min} [{\rm GeV}]$	tagger	N _j AK8	N _i ^{AK4}	N _b
CRt1	60–100	deep- $W > 0$	_	$\overline{(-)}$	1	≤ 4	≥ 1
CRt2	100–200	deep-WH > 0	_	-	1	≤ 4	≥ 1
CRt3	\geq 200	deep-WH > 0	_		1	≤ 4	≥ 1
CRt45	60–100	deep-W > 0	60–100	deep- $W > 0$	2	≤ 4	≥ 1
CRt6	60–100	deep- $W > 0$	0-60		2	≤ 4	≥ 1

We have 5 such CRts (in accordance with SR1-6); we illustrate only the CR45 here.

SR^{MC}, CR^{MC}, CR^{DATA-Rest} have consistent $M_{j(j)lv}$ shapes

CMS-PAS-B2G-20-001

• Use the CR to deliver rate $(N_{CR_i}^t)$ and shape (TF_i^t) correction to SR as:

 \rightarrow Maintain kinematics as in SR

 \rightarrow Get signal-free, top-pure sample

$$PRED_{SR_{i}}^{top} = N_{CR_{i}}^{t} MC_{SR_{i}}^{top} \frac{[DATA-rest]_{CRt_{i}}}{N_{CR_{i}}^{t} MC_{CRt_{i}}^{t}} = N_{CR_{i}}^{t} MC_{SR_{i}}^{t} TF_{i}^{t}$$

$$0.71 \text{ to } 1.03$$

(Where MC is SF-corrected) We validate prediction in low-ST samples

$W_{KK} \rightarrow WR \rightarrow WWW \rightarrow lv + jets$ CMS-PAS-B2G-20-001

SR1-6 Postfit Results

2.5

m_{jjlv} (TeV)

16/8/21

Xudong Lyu

Systematic uncertainty

Unc. on SFs

1. Parton Shower ~10-20%

Extract SFs with 3 alternative tt samples (powheg+p8, powheg+herwig7, MG+p8), maximum difference is used as unc.

2. Bias 10%

(due to Matrix method selection cuts)

3. Proxy-unc.

Accounts for differences between $\mathbb{R}^{4q/3q}$, \mathbb{R}^{lqq} and SM proxy jets: $t^{3,4}$, W. Compare normalized deep-W(WH) spectra to **evaluate % diff.** above the cut with metric:

4. High-pT extrapolation

Signal jets much more boosted wrt SM. Generate herwig++ signal, use % diff. wrt pythia8 as unc.

Systematic uncertainty (0-lep)

Sources	B or S	Effect on	Magnitude	Nuisance parameters
Parton shower + selection bias for W, $R^{\ell qq}$	B+S	Shape+rate		4, for LL, LH, HL, HH
Parton shower + selection bias for t^2	В	Shape+rate		8, for LL, LH, HL, HH
Parton shower + selection bias for $t^{3,4}$, $R^{3q,4q}$	B+S	Shape+rate		4, for LL, LH, HL, HH
Parton shower + selection bias for q/g	В	Shape+rate		8, for LL, LH, HL, HH
Proxy uncertainty for $R^{\ell qq}$	S	Rate	10–35%	2, for deep-W/WH
Proxy uncertainty for R ^{3q,4q}	S	Rate	12–43%	2, for deep-W/WH
Proxy uncertainty for unmatched	S	Rate	100%	2, for deep-W/WH
High- $p_{\rm T}$ extrapolation for W	S	Rate	100%	2, for deep-W/WH
High- $p_{\rm T}$ extrapolation for ${\rm R}^{\ell qq}$	S	Rate	23-30%	2, for deep-W/WH
High- $p_{\rm T}$ extrapolation for R ^{3q}	S	Rate	16–34%	2, for deep-W/WH
High- $p_{\rm T}$ extrapolation for R ^{4q}	S	Rate	24–33%	2, for deep-W/WH
QCD multijet normalization	В	Rate	5-40%	5, common for SR4,5
tt normalization	В	Rate	15–30%	5, common for SR4,5
Other background normalization	В	Rate	30%	5, common for SR4,5
m_{jj}, m_{jjj} tail shape	В	Shape		6, one for each SR
tī shape	В	Shape		6, one for each SR
Pileup and luminosity	S	Rate	1.7%	1, common for all SRs
PDFs, QCD renormalization and factorization scales	S	Rate	1.4%	1, common for all SRs
Jet energy scale and resolution	S	Shape		2, common for all SRs
Jet mass scale	S	Shape		1, common for all SRs

W_{KK}→WR→WWW→jets

CMS-PAS-B2G-21-002

16/8/21

Xudong Lyu

25