

中國科学院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for vector-like quark and leptoquarks at CMS

T.Yu (IHEP) on behalf of CMS 16 August 2021 The 13th China High Energy Physics Workshop

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for Vector-like quark

Introduction

- The discovery of Higgs boson motivates search for new physics
- Possible extensions given by: little Higgs models, extra dimensions models, composite Higgs models
- These theories predict existence of heavy vector-like quarks (VLQ)
- We will search for single produced VLQ T decaying in top quark + Z boson in dineutrino channel

Signal region

- MET $p_T > 200GeV$ (to be in the trigger turn-on)
- $Min(\Delta \phi_{MET,jets}) > 0.6$ (to remove QCD events)
- Veto muons and electrons (to be closer to signal region)

≻6 categories in total

=0 or >=1 forward jets, resolved or partially merged or fully merged

Final discriminating variable: transverse mass M_T $M_T = \sqrt{2p_T^{top} \cdot p_T^{MET} (1 - cos\Delta\phi)}$ between top and MET

Background Estimation

- Main Background: Z+jets, W+jets, ttbar
- Using Data-driven method to get correction factors from control region in data

Control regions for the main backgrounds are defined as:

➢Resolved category

Variable	SR	Z+jets CR	W+jets CR	ttbar CR
lepton	veto	veto	>=1	>=1
Number of midum b jet	>=1	=0	=0	>=1

Partially merged category

Variable	SR	ttbar CR
minΦ(MET,jet)	> 0.6	< 0.6

Fully merged category

Variable	SR	W/Z+jets CR	ttbar CR
Leotpn	veto	veto	1 loose muon or electron
minΦ(MET,jet)	> 0.6	> 0.6	No cut
Top jet	1 b-subjet	0 b-subjet	1 b-subjet

M_T [GeV]

5

Background estimation test

Comparison of data and the predicted background(resolved)

Systematics

7

Source	Effect(%)	Туре	
Luminosity	1.8	rate	
Pileup	0.2-3	rate	
b-tagging	0.5-1.2	rate	
Top tagging	9-10	rate, shape	
W tagging	7-8	rate, shape	
Trigger efficiency	1-3	rate, shape	
Prefiring	0.2-3	rate, shape	
JES	2-18	rate, shape	
JER	2-5	rate, shape	
PDF	1-5	rate	
μ_F 和 μ_R	8-13	rate, shape	
Background scale factors	5-30	rate, shape	

The dominant systematics are: top tagging, W tagging, $\mu_{R},\,\mu_{F},\,background\,SF$

Results-Resolved topology

- Distribution of the transverse mass in the signal region (the boosted result see here)
- All background processes and the respective uncertainties are derived from the fit to data

Results-limit

95% confidence level(CL) exclusion limits on the production cross section of T' times BR

- Narrow width resonance: Cross section : greater than 602–15 fb. Masses: below 0.98TeV
- 10-30% width resonance : Cross section : greater than 836–16 fb Masses: below 1.4TeV
- 2D limit: The hashed red line indicates the boundary of the excluded region

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for leptoquark

Motivation

Several BSM ideas foresee new bosons that carry both lepton and baryon number

Can SU(3)×SU(2)×U(1) originate from a larger symmetry group? \rightarrow Grand Unified Theory

Can fermions be made of more fundamental objects?

 \rightarrow Compositeness

Can a symmetry exist between fermions and bosons?

 $\rightarrow \mathsf{Supersymmetry}$

Bound states of fundamental

 \rightarrow $% \left({{\rm constituents}} \right)$ constituents may decay to a quark and a lepton

Possible decay of sparticles to a quark \rightarrow and a lepton (see e.g. R-parity violation scenario)

- Searches for leptoquarks (LQ) are well-motivated at the LHC
- Recent enhanced interest for LQ as a possible candidate to explain some anomalies in B-physics precision measurements

LQ relevant experimental features

- 9
- 2 production mechanisms considered(you can find them in paper here and here):

• Parameters determining the cross section(you can find paper <u>here</u> and <u>here</u>):

	Pair		Single
Scalar: LQ_s	LQ mass	Lambda (λ)	(coupling of SM lepton-quark to LQ)
Vector: LQ_v	k dimensionless coupling		Lambda (λ) ,k
	k=0 minimal co	oupling	
	k=1 Yang-Mills		

Decay channel (you can find paper <u>here</u> and <u>here</u>):
 LQs->top tau or LQs->bottom nu
 LQv->bottom tau or LQv->top nu

Signal region

- (top tau nu bottom) + (top tau nu) selection
- P_T^{miss}>=200GeV, H_T^{miss}>=200GeV(= magnitude of the sum of pT of the AK4 jet)
- H_T >=300GeV ((H_T = scalar sum of the pT of all AK4 jets)
- 0 electron and muon
- 1 tauh
- massT(tau,P_T^{miss})>=300GeV
- >= 1 top candidate
 - Fully merged topology(1 merged top quark)
 - Partially merged topology(1 merged W boson + 1 b-jet)
 - Resolved topology(2 AK4 jets + 1 b-jet)

≻4 categories in total

>=2b or = 1b, boosted or resolved

AK4 jet: anti-kt jet with radius = 0.4

Data vs SM expectation in the signal region

Catagory	Boo	sted	Resolved		
Category	$N_{\text{b-jet}} = 1$	$N_{\text{b-jet}} \ge 2$	$N_{b-jet} = 1$	$N_{\text{b-jet}} \ge 2$	
Misidentified $ au$	20.5 ± 2.1	14.4 ± 1.8	199 ± 13	170 ± 12	
t production	7.8 ± 2.1	8.2 ± 1.9	59 ± 5	127 ± 9	
Others	5.3 ± 2.0	1.6 ± 0.8	56 ± 25	23 ± 11	
Total bkg	34 ± 4	24.2 ± 2.7	314 ± 29	320 ± 19	
Data	39	25	332	316	
$LQ_V LQ_V k=1, M=1.7 \text{ TeV}$	4.6 ± 0.7	8.0 ± 1.2	3.1 ± 0.3	7.7 ± 0.7	
$\tau LQ_V k=1 \lambda=1.5$, M=1.4 TeV	5.5 ± 0.4	4.8 ± 0.4	5.03 ± 0.22	6.6 ± 0.3	
$\tau LQ_V k=0 \lambda=1.5, M=1.1 \text{ TeV}$	10.1 ± 0.7	8.6 ± 0.7	13.4 ± 0.6	16.4 ± 0.8	
$\nu LQ_S \lambda$ =1.5, M=0.5 TeV	13.5 ± 0.8	11.0 ± 0.8	52.7 ± 2.7	58 ± 3	

- Misidentified tau main background →estimated from data
- top production relevant
 →estimated normalizing MC to data
- Others not dominant →taken from simulation

Systematic uncertainties

Uncertainty	Background	Signal
Pileup	1-6%	1%
PDF	-	5%
Trigger	1-2%	1-2%
JES/JER	1-35%	2.5%
b-tag	3-10%	8-23%
Tauh scale	1-5%	1%
Tauh ID	5-13%	13-20%
W jet tag	2-11%	1-4%
top jet tag	3-15%	7-14%
Misidentified taus bkg	9-56%	-
Misidentified tau closure	12%	-
Luminosity	2.3-2.5%	2.3-2.5%
Background cross-section	5-30%	-

Exclusions for scalar LQ

- Scalar Pair LQ production does not depend from λ .
- LQsLQs: LQs masses below 0.95 (1.03) TeV are excluded
- vLQs : LQs masses below 0.55 (0.56) TeV and 0.75(0.81) TeV for λ of 1.5 and 2.5 are excluded.
- LQsLQs+vLQs : LQs masses below 0.98 (1.06) TeV and 1.02 (1.10) TeV for **λ** of 1.5 and 2.5 are excluded.

Exclusions for vector LQ(k=0)

- LQvLQv: LQv masses below 1.29 (1.39) TeV are excluded.
- *τ*LQv : LQv masses below 1.03 (1.12) TeV and 1.25(1.35) TeV for **λ** of 1.5 and 2.5 are excluded.
- LQvLQv+rLQv : LQv masses below 1.34 (1.46) TeV and 1.41 (1.54) TeV for λ of 1.5 and 2.5 are excluded.

Exclusions for vector LQ(k=1)

Single LQ

Pair + Single LQ

- LQvLQv: LQv masses below 1.65 (1.77) TeV are excluded.
- *τ*LQv : LQv masses below 1.20 (1.29) TeV and 1.41(1.53) TeV for **λ** of 1.5 and 2.5 are excluded.
- LQvLQv+rLQv: LQv masses below 1.69 (1.81) TeV and 1.73 (1.87) TeV for **λ** of 1.5 and 2.5 are excluded.

λ-Mass exclusion

- Values of λ up to 2.5 are constrained by electroweak precision measurements

• For LQv, the gray area(get from paper) shows the 95% CL band preferred by the B physics anomalies: $\lambda = \sqrt{0.7 \pm 0.2} \times m_{LQ}$ TeV. A relevant portion of this parameter space is excluded.

Summary

Study of single production of VLQ in tZ has been shown all Run2 data

	Cross section@95%CL	Mass@95%CL
Narrow width resonance	>602-15fb	<0.98TeV(5%)
10-30% width resonance	>836–16 fb	<1.4TeV(30%)

- This is first result of MET + jets final state in CMS
- This is the current best published result on single-VLQ T' in the tZ(vv) decay channel.
- The analysis has been published in PAS

>We have presented a search for for LQ produced singly and in pairs

	LQS		$LQ_V k = 0$		$LQ_V k = 1$	
Pair	0.95 (1.03)		1.29 (1.39)		1.65 (1.77)	
λ	1.5	2.5	1.5	2.5	1.5	2.5
Single	0.55 (0.56)	0.75 (0.81)	1.03 (1.12)	1.25 (1.35)	1.20 (1.29)	1.41 (1.53)
Pair+Single	0.98 (1.06)	1.02 (1.10)	1.34 (1.46)	1.41 (1.54)	1.69 (1.81)	1.73 (1.87)

- This is the first analysis consider the boosted topology.
- This is the first analysis study the single and pair production simultaneously to search leptoquark.
- This analysis has been published in PLB

中國科學院為能物昭為第 Institute of High Energy Physics Chinese Academy of Sciences

backup

Analysis strategy

Final discriminating variable: transverse mass ${\rm M_T}$ $M_T=\sqrt{2p_{\rm T}^{top}\cdot p_{\rm T}^{MET}\left(1-cos\Delta\phi\right)}$ between top and MET

≻Trigger

- HLT_PFMETNoMu120_PFMHTNoMu120_IDTight
- HLT_PFMET120_PFMHT120_IDTight

> Lepton

- Loose electron ID, pt > 30GeV
- Loose muon ID, pt >30GeV

> Jets

- CHS ak4 jets with jet pt > 30 GeV and passing the tight jet ID (2016 jet ID look here, 2017 look here and 2018 look here)
- PUPPI AK8 jets with pt > 200GeV
- DeepCSV b-tagger with medium WP for all Run2 data.
- $|\eta| < 2.4$ (or 2.4 < $|\eta| < 4.0$ for forward jets)

>MET

- MET pt > 200GeV
- 2016, 2017 and 2018 MET filters taken from here

≻W/top tagging

- W jet: PUPPI AK8 Jet, pt>200GeV, 65< SD mass < 105GeV, tau21DDT < 0.43
- Top jet: PUPPI AK8 Jet, pt > 400GeV, 105< SD mass< 220 GeV, tau32 < 0.65

Min DeltaPhi MET-jet

Remove QCD background

Scale factor

Background estimation test

Comparison of data and the predicted background(merged)

26

Background estimation : SF extraction

We extract bin-by-bin SFs on backgrounds.

For **background X** (e.g. yellow ZJets here) In control region **CR** vs signal region (**SR**):

1) subtract all non-X background

2) SF_CR= (Data-nonX)/X_CR

3) X_SR = X_MC_SR * SF_CR

Results – Partially merged topology

Results – Fully merged topology

Status of B-physics anomalies

Courtesy of Andreas Hoecker LHCP2020 Experimental highlights

Status of flavour anomalies:

$$R_{D^{(*)}} = \frac{B(B \to D^{(*)}\tau\nu)}{B(B \to D^{(*)}\ell\nu)}$$

Possible new physics in charged current in tree diagram

Tension reduced after 2019 Belle result ${\scriptstyle [1904.08794]}$ in agreement with SM

Remaining tension (HFLAV): 3.1 σ Corresponding $R_{J/\psi|\tau/\mu} \sim 2\sigma$ above SM [LHCb: 1711.05623]

 $R_{K^{(*)}} = \frac{B(B \to K^{(*)}\mu\mu)}{B(B \to K^{(*)}ee)} \stackrel{[SM]}{\cong} 1$

Experiments measure double ratio involving ${\rm J}/\psi$

 R_{K} : LHCb most precise, Run-2 ~SM, combination with Run-1: 2.5 σ < SM

 R_{K^*} : LHCb (most precise) low (2.3~2.5
ơ) at low q²

New results by LHCb:

$$R_{pK} = \frac{B(\Lambda_b^0 \to pK^-\mu\mu)}{B(\Lambda_b^0 \to pK^-ee)} \stackrel{[SM]}{\cong} 1$$

LHCb measures double ratios to ${\mathsf J}/\psi$

Result: $R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05$ in agreement with SM (but also lower)

$B \rightarrow K^* \mu \mu$ angular analysis

New result from LHCb with 4.7 fb⁻¹ (Run 1 + 2016 data)

Full fit to all angular observables

Global fit by LHCb to SM model varying $Re(C_9)$ only gives 3.3σ discrepancy

- No firm conclusion, need more data!
- Possible to clarify anomalies within timescale of Phase 2((arXiv:1709.10308))

RK. RK*

B-physics anomalies and LQ

- Upper limit on new physics scale: 9 (80) TeV for $b \rightarrow clv$ ($b \rightarrow sll$) transition (arXiv:1706.01868)
- Couplings to 2nd, 3rd fermion generation favored
- LQ_s (LQ_v) \rightarrow t tau (t v), b nu (b tau) strong candidate to explain the anomalies arXiv:1808.02063 (arXiv:1706.07808)

Decay BR of 0.5 preferred case to explain the anomalies

 \rightarrow t tau nu b has x2 BR w.r.t. existing searches ttnunu (SUS-19-005) and bbtautau (EXO-17-016)

Leptoquark decay channel

• Decay branching ratio of 0.5 to each leptonquark

- Final states top tau nu bottom (pair LQ) and top tau nu (single LQ) \rightarrow 2 categories of events >= 2 b or = 1 b
- Fully hadronic decay of the top quark and tau lepton
- Top reconstruction

• ST = tauh p_T + top p_T + p_T^{miss} used for the signal extraction

jet->tau misidentification background estimation method

- **Tight-to-loose ratio** used to estimate **fake tau events** (QCD, ttbar, Wjets, etc, without genuine taus)
- FR is the probability that a VLoose tau has to pass the Medium ID

 $FR = \frac{N_{Medium}}{N_{VLoose}}$, measured in a control region

• From number of events passing VLoose but not the Medium ID, $N_{VL,!M}$, estimate number of predicted events in the signal region with fake tau:

 $N_{fake\,tau}^{SR} = \sum_{pt,eta} N_{VL,!M}(pt,eta) \cdot \frac{FR(pt,eta)}{[1 - FR(pt,eta)]}$

Top background

- Normalize MC to data in signal-free region
 - massT(tauh,p_T^{miss}) < 80 GeV
 - N b-jet >= 2
- MC Scaled by 10%