

Measurement of D⁺ meson production and total charm production yield at midrapidity in Au+Au collisions at $Vs_{NN} = 200$ GeV from STAR experiment

Name: Xinyue Ju 巨欣跃 (STAR collaboration) University of Science and Technology of China Lawrence Berkeley National Laboratory

中国物理学会高能物理分会第十三届全国粒子物理学术会议(2021)

Introduction: Open Charm Transport in URHICs

- Produced predominantly in initial hard-scatterings
- Experience the whole evolution of the system
- sensitive probe to the QGP because of their large masses

Introduction: The STAR Experiment

- TPC: Tracking and PID (dE/dx)
- TOF: PID $(1/\beta)$
- HFT: 2014 2016

Excellent DCA resolution

 \sim 35 µm @ p_T = 1 GeV/c

Phys. Rev. C 99 (2019) 34908

Introduction: Charm Hadron Measurement

2) Λ_c measurement at STAR

4

Introduction: Charm Hadron Measurement

3) D_s measurement at STAR

4) D^+ and D^0

Particle symbol	Quark content	Rest mass (MeV/c ²)	Decay channel	Proper decay length (μm)
D ⁰	cu	1864.84 ± 0.17	K⁻ π⁺ 3.89%	~120
D+	cd	1869.62 ± 0.20	Κ [−] π ⁺ π ⁺ 8.98%	~312

Charm quark fragmentation f (c \rightarrow D): D⁰ ~ 0.55, D⁺ ~ 0.23 (D. E. Groom et al. Eur. Phys. J. C 15 (2000))

D⁺ is important to :

- Constrain total charm cross section
- Offer complementary information to study charm quark dynamics in QGP

5

D[±] Reconstruction Method

- STAR Run14&16 @200GeV Au+Au ~ 900 (1200) million minbias events in run14 (16)
- D⁺ Decay channel : D[±] —> $\pi^{\pm} \pi^{\pm} K^{\mp}$ (~ 8.98%)
- PID in TPC and TOF:

D[±]Cuts Optimization: TMVA

Input variable distributions and Cut efficiencies for centrality 10-40% pt 2.0-3.0 GeV/c

Background sample : wrong-sign $\pi \pi K$ combination from real data

Signal sample: EventGen generator (D[±] decay) & data-driven fast simulation (detector response) Cuts are tuned in 5 p_T bins \times 3 centrality bins

8/17/2021

D[±] Invariant Mass spectra

Cut Variables distribution

The distribution of cut variables is consistent between data and datadriven fast simulation

$D^{\pm} p_{T} spectra$

Results: D[±]/D⁰ Yield Ratio

 D[±]/D⁰ yield ratio vs. p_T is consistent with PYTHIA (p+p @200GeV) and ALICE PbPb results @5.02 TeV

 D⁰ and D[±] have same suppression in Au+Au collisions

Results: D⁺/D⁰ Yield Ratio

D^{\pm}/D^{0} yield ratio as a function of N_{part} compared to other collision systems

Reasonable agreement of different experiments

Only STAR and ALICE cover p_T from 0 GeV/c

ZEUS: p_T > 3.5 GeV/c, H1: p_T > 2.5 GeV/c

Generally different η coverage

■ STAR: |η| < 1, ZEUS: |η| < 1.6, H1: |η| < 1.5, ALICE: |η| < 0.5

 No modification of the relative abundances of D[±] and D⁰ species observed in different collision system and energy

HERA, (e+e-, γp, DIS): JHEP 1309 (2013) 058 ALICE, (pp 5.02 TeV): Eur.Phys.J. C79 (2019) no.5, 388

Results: D[±] R_{AA}

D mesons suppressed at high p_T

- Level of suppression increases towards more central Au+Au collisions
- Interactions of c-quarks with the QGP

Suppression of low $p_T D$ mesons

- Independent of centrality
- Possibly due to coalescence hadronization of c-quarks
 - * Supported by measurements of Ds and Λc
 - * Re-distribution of charm among open charm hadron species

Good agreement of D^0 , D^\pm and ALICE

Results: Charm Hadron Production Cross-section

Charm H	lardon	Cross-section $\frac{d\sigma}{dy} _{y=0}$ (µ b) (per nucleon-nucleon collision)		
5 // in pre				
	D ⁰	39.0 ± 0.6 (stat.) ± 1.1 (sys.)		
AuAu 200 GeV	D+	20.7 ± 1.2 (stat.) ± 3.8 (sys.)		
(10, 40% = 0.9, Cov(a))	D_s^+	15.4 ± 1.7 (stat.) ± 3.6(sys.)		
(10-40% p _T 0-8 Gev/c)	$\Lambda_{ m c}^+$	36.4 ± 5.3 (stat.) ± 22.3 (sys.) *		
	Total	112.4 ± 5.7 (stat.) ± 22.9 (sys.) *		
P+P 200 GeV	Total:	130 ± 30 ± 26		

First measurement of open-charm hadron cross section per nucleon pair in

Au+Au collision for major open-charm hadron ground states

All cross sections calculated in 0 < pT < 8 GeV/c

Agreement with total charm cross section measured in p+p at 200 GeV

- Charm quark production follows the number-of-binary collisions scaling in heavy-ion collisions
- Charm quark production predominantly in hard partonic scattering

* Λ_c^+ results are using 10-80% centrality

* 8% uncertainty on σ_{pp} and $N_{collision}$ are not included

Back up

Efficiency Correction Procedures

 $\frac{d^2 N}{2\pi p_T dp_T dy} = \frac{1}{2 \cdot B.R.} \frac{\Delta N_{raw}}{N_{evt} \cdot 2\pi \cdot p_T \Delta p_T \Delta y} \frac{1}{\varepsilon_{\text{TPC}} \cdot \varepsilon_{\text{PID}} \cdot \varepsilon_{\text{HFT}} \cdot \varepsilon_{\text{Topo}}}$

- ΔNr_{aw} : reconstructed particle counts in each p_T and centrality bin
- ε_{TPC} : TPC acceptance and tracking efficiency (calculated by data embedding)
- ε_{HFT} · ε_{Topo}: HFT acceptance and tracking plus topological cut efficiency (calculated by data-driven fast simulation)
 - ε_{PID} : particle identification efficiency (calculated by K π sample from data)

Systematic Error

