

「國科学院為能物記研究所 Institute of High Energy Physics Chinese Academy of Sciences

The R&D of the Ultra Fast MCP-PMTs for High Energy Physics

Sen QIAN (钱森), Lishuang MA (马丽双)

On Behalf of the FPMT Workgroup (IHEP+NNVT)

Institute of High energy Physics, Chinese Academy of Science

qians@ihep.ac.cn

16th. August. 2021

中国物理学会高能物理分会第十三届全国粒子物理学术会议(2021)

Outline

2

1 (2)

I. The Motivation of the FPMTs;

II. The key technologies of the FPMTs;

III. The Prototypes of the FPMTs;

> 1.1 The design of the 2 inch Fast MCP-PMT

IHEP Design. After the successfully 20 inch MCP-PMT R&D, the PMT group in IHEP try to design and produce the 2 inch FPMT(Fast PMT), with high QE photocathode, and low cost!

1.2 The potential applications of FPMTs

1.3 The Ability of the R&D for the MCP-PMTs

5

20" MCP-PMT (2015) 20" MCP-PM	IT (2017-2020)	The Core tec	hnclogies f	or PMTs		
		> The High QE photocathode;				
	SISCE X	দিত High Ga	ain low Noi	se MCPs;		
	The low radioactive glass;					
		The Vacuum	n transfer e	equipment;		
8" MCP-PMT (2012-2013)						
The second second		PMTs	Large MCP-PMT	Fast MCP-PMT		
5" I	MCP-PMT (2011)	QE @ 400nm	30%	30%		
		Area	20 inch	2 inch		
Design 2009 2" MCP-PMT (2010)		Ancde	1	8X8		
	KEV	RT@1pe	1.5ns	100ps		
	HE-3	TTS@1pe	~5 ns	~ 50ps		
From 2010-2020,the 2", 5",8° and 2	20" MCP-PMT	Gain	1X10^7	1X10^7		
prototypes were successfully produced	DR	50K/PMT	1Hz/mm ²			
High CE MCP modules and high QE p	hotocathode.	Cost	low	low		
	-					

Outline

6

1 (2)

I. The Motivation of the FPMTs;

II. The key technologies of the FPMTs;

III. The Prototypes of the FPMTs;

2.1 The FPMT simulation models

Available parameters: Gain, TT, TTS, ER, RT, Electrons angle distribution

FPMT anti-magnetic performance simulation

----The simulation results are in good consistence with the test results with the same construction ----- proving the reliability of the model. ----With this correct simulation model, we can do the correct design for the new construction of different types of FPMTs.

Ref: Yao Zhu et al., Sensors and Actuators A 318 (2021) 112487.

Test principle diagram Outside Synchronous trigger Anode PC MCP Dark Box HV Start time (S_1) fiber Light source Fast time detector PS Cable for Laser detector signal TTS Trigger signal DAO Stop time(S_2) $TTS_{\text{test-pslaser}} = \sqrt{TTS_{\text{test-system}}^2 + TTS_{FPMT}^2}$ The PS laser to light the FPMT and its Test result system-TTS **FPMT-TTS** synchronous signal to be the Start Time, The FPMT anode signal is the Stop Time; $TTS_{Test-System} = \sqrt{TTS_{jitter-pslight}^2 + TTS_{jitter-DAQ}}$ The TTS is the signa of the TT;

System-TTS

Pslight-jitter

<3ps

DAQ-jitter

<1ps

System time resolution = ~3.2ps

2.2.1 The Limit Time Resolution of the FPMTs

• The relationship between the number of photons and TTS is in line with $\frac{1}{\sqrt{N}}$ ----With enough photons, the TTS of the FPMT will get stable value, the Limit Time Resolution, the best TTS of the FPMT.

----Some FPMT can not test the SPE spectrum and the TTS_{SPE}, but can get this **TTS_{limit}**.

2.3 The Roadmap of the R&D of the FPMTs

Outline

12

1 (2)

I. The Motivation of the FPMTs;

II. The key technologies of the FPMTs;

III. The Prototypes of the FPMTs;

3.1 1 inch FPMT prototypes

	HV/V	gain	P/V	Amplitude (SPE)	RT	Width	TTS @SPE	TTS @400mV
Single Anode FPMT	-1500	1.0E7	13	10mV	1400ns	2.3ns	205ps	30ps
2*2 anodes FPMT	-2500	1.9E6	6.5	33.9mV	243DS	378ps	66.8ps	16.6ps

The development of FPMTs with single anode or 2*2 anode with in 1 inch size have been completed in the early stage, and good performance has been obtained and reported in international conferences.

Rer Qian sen, reported in RICH 2018, ICHEP 2020.

3.2 2 inch FPMT prototypes

	HV/V	gain	P/V	Amplitude (SPE)	RT	Width	TTS @SPE	TTS @MPE
4*4 anodes FPMT	-1650	9.6E6	1.83	21.13mV	431.2ps	1.2ns	106.6ps	28ps @1.2V
8*8 anodes FPMT	-1700	3.7E6	2.78	40.5mV	391ps	768ps	49.9ps	11.3ps @1.7V

The 8*8 sample tube achieves a single-photon time resolution of less than **50ps** and a multi-photon time resolution close to 10ps.

Summary

- FPMT sample tubes from single anode to 8*8 anodes have been successfully developed.
- The TTS@SPE of 8*8 anode FPMT has achieved 49.9ps, TTS@MPE is near 10ps.
- The single anode FPMT with new structure is being developed, and the base is being optimized to obtain more excellent time performance.

× (2021

Thanks for your attention!

Any Comment & Suggestion are welcomed!

议 (2021),