

Low- $p_T \mu^+ \mu^-$ pair production in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Jian Zhou (for the STAR Collaboration)

State Key Laboratory of Particle Detection and Electronics,

Department of Modern Physics,

University of Science and Technology of China

STA

Outline

- Introduction and motivation
- Particle identification
- Preliminary results
 - □ Invariant mass spectrum
 - \square p_T distribution
 - **D** t distribution
 - $\Box \ \Delta \phi \ distribution$
- Summary

Electromagnetic field in heavy-ion collisions

- Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field.
- Weizsacker–Williams Equivalent Photon Approximation(EPA):
- ✓ In a specific phase space, transverse EM fields can be quantized as a flux of quasi-real photons.

$$n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \approx |\vec{E}|^2 \approx |\vec{B}|^2$$

• Large quasi-real photon flux $\propto Z^2$

2021/8/17

Di-leptons from photon interactions

Photon interactions

- photon-photon interaction (dilepton...) $\propto Z^4$ —— distinctly peaked at low p_T
- photon-nuclear interaction (vector mesons) $\propto Z^2$
 - \checkmark Coherent: photon interacts with the whole nucleus
 - \checkmark Incoherent: photon interacts with nucleon or parton individually

Conventionally only studied in ultra-peripheral collisions (b>2R_A,UPCs) to keep coherence condition

Photon production with nuclear overlap

 \square Excess relative to the hadronic cocktail concentrates below $p_T \sim 0.15 \text{ GeV/c}$.

Evidence of photon interactions in hadronic heavy ion collisions.

 \square p_T² spectra also were measured and compared with different model calculations.

STAR

Birefringence of the QED Vacuum

Recently realized, linearly polarized photonphoton collisions will lead to $\cos 4\Delta\phi$ and $\cos 2\Delta\phi$ angular distribution which is related to vacuum birefringence.

- 4th-order azimuthal angular modulation of e^+e^- pairs had been observed by the STAR Collaboration.
- $\cos 2\Delta \phi$ azimuthal asymmetry is proportional by m^2/p_{\perp}^2 .
 - **D** Only sizable for $\mu^+\mu^-$ pair production.

The Solenoidal Tracker At RHIC (STAR)

Time Projection Chamber: Time Of Flight:
tracking, momenta, and PID
PID by velocity

周健 第十三届全国粒子物理学术会议

Muon identification

dE/dx Vs. P

PID@TOF

Muons can be identified at low momentum by using TOF.

Invariant mass spectrum

- A significant enhancement with respect to the cocktail.
- η , ω , and $c\bar{c}$ are the main sources of the cocktail.

Invariant mass spectrum

• Consistent with the theoretical calculations in different centrality.

p_T distributions

W.M. Zha et al., Phys. Lett. B 800 (2020) 135089

- Excesses concentrated below $p_T \approx 0.1$ GeV/c.
- Data are consistent with hadronic expectation when $p_T > 0.1$ GeV/c.
- EPA-QED calculation is compatible with data.

t distribution (60-80%)

W.M. Zha et al., Phys. Lett. B 800 (2020) 135089

- Employ $\sqrt{\langle p_T^2 \rangle}$ (characterizes p_T broadening) to compare the data with model calculation.
 - Consistent with the EPA-QED calculation.

$\Delta \phi$ distribution (60-80%)

	Measured	χ^2/ndf	QED
$\left A_{2\Delta\phi}\right (\%)$	$20 \pm 8 \pm 3$	32/17	13
$\left A_{4\Delta\phi}\right (\%)$	35 <u>±</u> 8 <u>+</u> 7		22

- Observation of the 4th-order azimuthal angular modulation of $\mu^+\mu^-$ pairs (3.3 σ).
- First indication of the 2nd-order azimuthal angular modulation $(2.3\sigma)!$

- First measurement of photo-produced $\mu^+\mu^-$ pair production at very low p_T at STAR.
- A significant $\mu^+\mu^-$ enhancement w.r.t. cocktail is observed at very low p_T in peripheral Au + Au collisions at 200 GeV.
- The $\sqrt{\langle p_T^2 \rangle}$ is consistent with the EPA-QED calculation.
- Observation of the 4th-order azimuthal angular modulation of $\mu^+\mu^-$ pair.
- First indication of the 2nd-order azimuthal angular modulation in $\gamma \gamma \rightarrow l^+ l^- !$

- First measurement of photo-produced $\mu^+\mu^-$ pair production at very low p_T at STAR.
- A significant $\mu^+\mu^-$ enhancement w.r.t. cocktail is observed at very low p_T in peripheral Au + Au collisions at 200 GeV.
- The $\sqrt{\langle p_T^2 \rangle}$ is consistent with the QED calculation.
- Observation of the 4th-order azimuthal angular modulation of $\mu^+\mu^-$ pair.
- First indication of the 2nd-order azimuthal angular modulation in $\gamma \gamma \rightarrow l^+ l^-$!

Thank you!