

中國科學院為能物招稱完備 Institute of High Energy Physics Chinese Academy of Sciences

Optimization on silicon detectors at CEPC

Zhigang Wu 2019.11.28

Outline

- Introduction
- Fast simulation and full simulation results
- Flavor tagging performance with different vertex geometry
- Influence of the material budget near beam pipe
- Performance of an ultra lightweight vertex layout
- Influence of SET on track and Higgs mass reconstruction

Introduction

- H -> bb, cc and gg is the core part of the CEPC Higgs program
- Vertex system with high impact parameter resolution is crucial

 Table 6.1
 Required performance of the CEPC sub-detectors for critical benchmark Higgs processes.

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Паскег	$\oplus 1 imes 10^{-3}/(p_{\mathrm{T}}\sin\theta)$
$H \to b\bar{b}, \; c\bar{c}, \; gg$	${\rm BR}(H\to b\bar{b},\ c\bar{c},\ gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \mu \mathrm{m}$
$H\to q\bar{q}, \; VV$	${\rm BR}(H \to q \bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H\to\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%~({\rm GeV})$

 Table 1. Design parameters of the CEPC vertex system.

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

Simulation tools

- Fast simulation: "LiC Detector Toy" (LDT) software tool
- Full simulation: Mokka and Marlin

consistent

Key geometry parameters

• The influence of the geometry parameters on the impact parameter resolution

□ Inner radius, Material budget, Spatial resolution

Flavor tagging performance

- Only di-jet final modes (bb, cc, gg) are considered, evaluated by ROC
 - SM bkg and other decay mode of Higgs can be effectively reduced
- Case C: upgraded ALICE ITS; Case A: half values of the baseline design

C-tagging efficiency

C-tagging efficiency

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23
			6

Br(H->bb, cc) measurement

- Br (H -> cc) is extremely sensitive to the vertex design
- Br (H -> bb) is less sensitive to the vertex design

$$\frac{\delta_{\mu}}{\mu} \propto \frac{\sqrt{S+B}}{S} = \sqrt{\frac{1}{S}} \sqrt{\frac{S+B}{S}} \propto \frac{1}{\sqrt{\epsilon \cdot p}}.$$

Table 3. Maximum $\epsilon \cdot p$ value comparison for the $Br(H \to c\bar{c})$ measurement.

	Scenario A	Scenario B	Scenario C
$\epsilon \cdot p$	0.133 ± 0.002	0.095 ± 0.001	0.078 ± 0.001
	41%		-22%

Table 4. Maximum $\epsilon \cdot p$ value comparison for the $Br(H \rightarrow b\bar{b})$ measurement.

	Scenario A	Scenario B	Scenario C
$\epsilon \cdot p$	0.925 ± 0.001	0.914 ± 0.001	0.900 ± 0.001
	1%		-1.5%

Inner radius is the most sensitive parameter

Material budget near beam pipe

- BESIII beam pipe material: 1.04%/X₀ (Be: 0.4%, gold: 0.44%, SMO: 0.2%)
- CEPC beam pipe material: 0.14%/X₀ Be, heat load more than 1000 W
- Have to increase the material budget near beam pipe due to cooling Beam pipe support

Material budget near beam pipe

- Have to increase the material budget near beam pipe due to cooling system
- Influence is comparable with the material change of vertex detector

9

ALICE ITS3

- Eol details milestones for all activities, grouped by:
 - Sensor Chip
 - Thinning and bending
 - Mechanics and cooling
 - Beam pipe
- R&D starts now
- ▶ TDR is foreseen for 2022

See: M. Mager , | ITS3 | VERTEX 2019 | 17.10.2019 |

	ALICE-PUBLIC-2018-
	Letter of Intent for an ALICE ITS Upgrade in LS3
ALI	CE Collaboration, CERN, Geneva, Switzerland
	Abstract
Recent innova estratordinary opp scope. This docur of curved wafers s- supprecedented low only 18 run radia installed during th System. It will pre point and a large tum. The combin measurement of the collisions at the L the next decade.	tions in the field of silicon imaging technology for consumer applications open ortunities for new detector concepts, and hence offer strongly improved physics near presents a proposal for the construction of a novel vertex detector consisting cale ultra-thin silicon sensors arranged in perfectly cylindrical layers, featuring an w material hudget of 0.05 % xp. eer layer, with the innermost layer positioned at l distance from the interaction point. This new vertex detector is planned to be to LHC LS3 to explace the innermost layer of the ALLCE laner Tracking wide a large reduction of the material budget in the region close to the interaction improvement of the tracking precision and efficiency at low transverse momen- ation of these tox improvements will lead to a significant advancement in the w momentum charm and beauty hadrons and low-mass dielectrons in heavy-ion HC, which are among the main objectives of the ALICE physics programme in
	Geneva, Switzerland

ALICE ITS3 Layout

Beam pipe Inner/Outer Radius (mm)	16.0/16.5			
IB Layer Parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	18.0 16mm	24.0	30.0	
Length (sensitive area) (mm)	300 250mm			
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active area (cm ²)	610	816	1016	
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94	
Number of sensors per layer	2			
Pixel size (µm²)	O (10 x 10)			

Similar layout with CEPC layer 1-3

New beam pipe:

- "old" radius/thickness: 18.2/0.8 mm
- new radius/thickness: 16.0/0.5 mm
- Extremely low material budget:
 - Beam pipe thickness: 500 µm (0.14% X0)
 - Sensor thickness: 20-40 μm (0.02-0.04% X0)
- Material homogeneously distributed:
 - essentially zero systematic error from material distribution

M. Mager | ITS3 | VERTEX 2019 | 17.10.2019 | 14

Wafer-scale chip (2)

Possible architecture

- Starting from ALPIDE architecture
- Porting to 65 nm technology node
 - smaller pixels
 - larger wafers (300 mm instead of 200 mm)

- Basic building block of 15 mm height
 - to be repeated n times in vertical direction to obtain the sizes needed per layer

CEPC layer 6: L=190mm

M. Mager | ITS3 | VERTEX 2019 | 17.10.2019 | 10

Stitching and thinning

CMOS APS – wafer-scale integration

Photolithographic process defines wafer reticles size \Rightarrow Typical field of view O(2 x 2 cm²) Reticle is stepped across the wafers to create multiple identical images of the circuit(s)

A stepping process called "stitching" allows building sensors of arbitrary size, the only limit being the size of the wafer.

- Reticle made of blocks
- Printing only individual blocks at each step with a tiny well-defined overlap

These days, stitching is widely applied in the digital imaging industry (e.g. large flat panels for medical and dental X-rays)

Ultra-thin chip (<50 um): flexible with good stability

Vertex layout with <u>6 single ultra lightweight layers</u> — comparing with <u>Baseline Design</u>

 Table 1. Design parameters of the CEPC vertex system.

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	- 39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

T	

	R(mm)	Z (mm)	$\sigma(\mu m)$ (layout1/layout2)	material
Layer1	16	62.5	4/2.8	0.05%X ₀
Layer2	24	62.5	4/4	$0.05\% X_0$
Layer3	32	125	4/4	$0.05\% X_0$
Layer4	40	125	4/4	$0.05\% X_0$
Layer5	50	125	4/4	$0.05\% X_0$
Layer6	60	125	4/4	$0.05\%X_0$

Impact parameter resolution: fast simulation

- better performance (~20% improvement) for layout1 at low momentum, but poor performance at high momentum
- The performance of layout2 is better than baseline design
- both within the requirement

Material budget plays a major role at low momentum, while resolution plays a major role at high momentum.

Momentum resolution : *fast simulation*

effect on p_T resolution is negligible

SET introduction

- Silicon External Tracker, providing precise hit points after the TPC
- Improving the overall tracking performance in the central region
- Extrapolating from the TPC to the calorimeter

Effect of SET on track reconstruction

SET has a high influence on the resolution of ZO, theta and omega
 When Pt is high
 Made b

Effect of SET on Higgs Mass reconstruction

- Higgs mass resolution in H-> $\mu^+\mu^-$. Use MC information to find out true μ tracks
- High influence on Higgs Mass resolution

Made by Taifan.

19

Thanks for your attention!

