Simulation framework in the CEPCSW prototype

Ziyan Deng, Wenxing Fang, Chengdong Fu, Xingtao Huang, Gang Li, Weidong Li, <u>Tao Lin</u>, Shengsen Sun, Jiaheng Zou

lintao@ihep.ac.cn

(on behalf of offline group)

CEPC workshop

IHEP

18-20 Nov. 2019

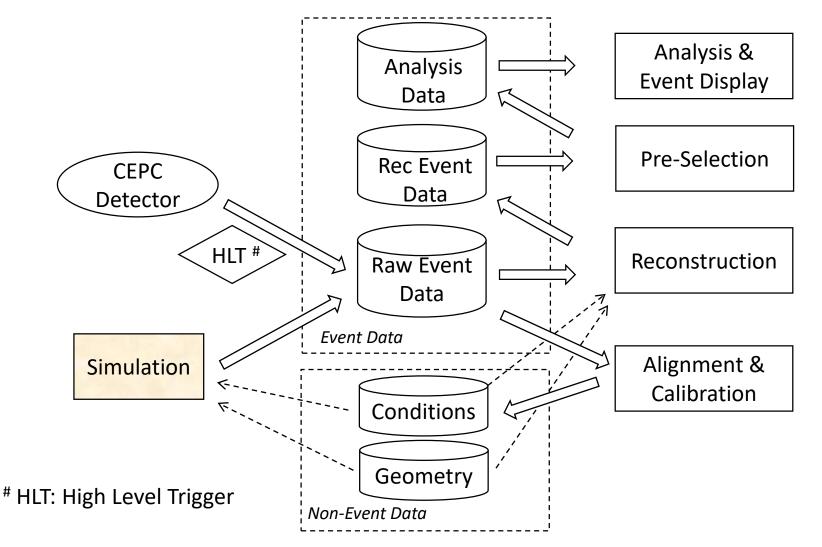
Outline

During R&D stage, CEPC seeks a lightweight & unified data processing system. A simulation framework is developed based on Gaudi and DD4hep.

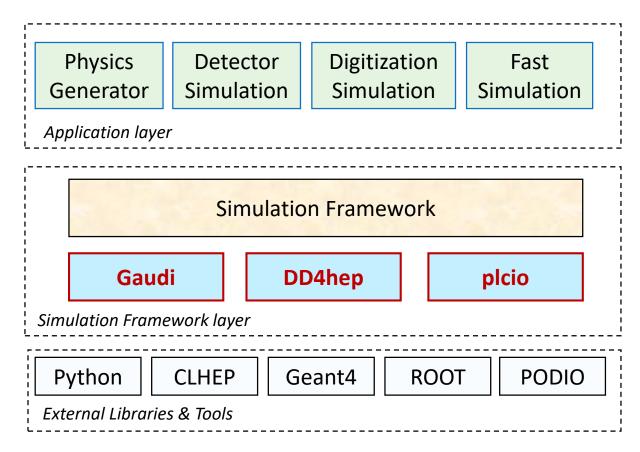
- Motivation
- Design & implementation
 - Event Data Model
 - Geometry management
 - Physics generator interface
 - Detector simulation
- Software performance
- Summary and plans

Motivation

CEPC data volume and computing challenges

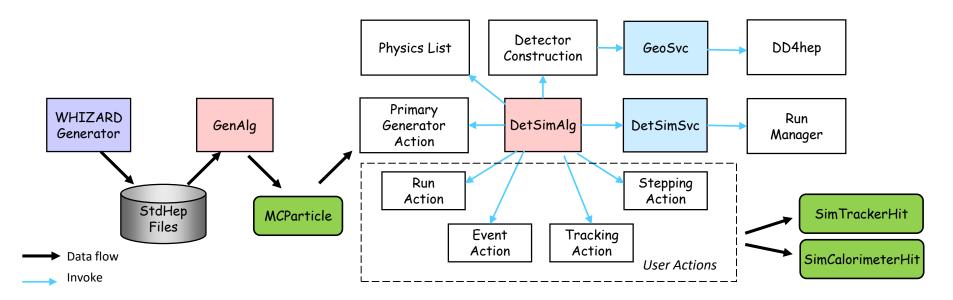

	Estimated Data Volume	
Short term	R&D: detector design	~PB/year
	Higgs/W factory	1.5~3 PB/year
Long term	Z factory	0.5~5 EB/year

Note: the data volume for Real data and MC data is at least 1:1.


Requirements on simulation:

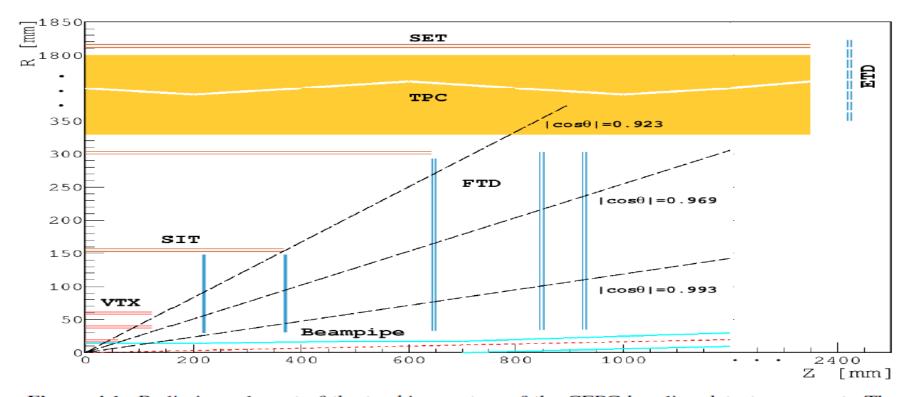
- R&D stage: fast development and iteration.
- Operation: efficient and sustainable.

Data processing chain


Simulation Software Stack

Simulation framework provides flexible integration of the applications (physics generator, detector simulation, digitization).

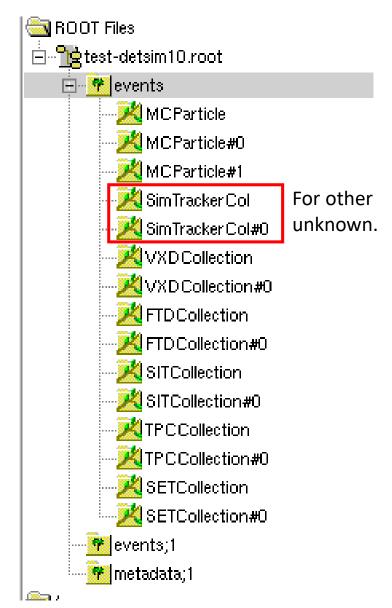
Design of simulation framework


- Based on Gaudi and DD4hep
- In the current prototype, "Tracker" is setup.

Core Packages: Generator, Simulation/DetSimInterface, Simulation/DetSimCore Other packages: Detector, Simulation/DetSimGeom, Simulation/DetSimAna

Schematic view of Tracker

From CDR


Figure 4.1: Preliminary layout of the tracking system of the CEPC baseline detector concept. The Time Projection Chamber (TPC) is embedded in a Silicon Tracker. Colored lines represent the positions of the silicon detector layers: red lines for the Vertex Detector (VTX) layers; orange lines for the Silicon Inner Tracker (SIT) and Silicon External Tracker (SET) components of the silicon tracker; gray-blue lines for the Forward Tracking Detector (FTD) and Endcap Tracking Detector (ETD) components of the silicon tracker. The cyan lines represent the beam pipe, and the dashed red line shows the beam line position with the beam crossing angle of 16.5 mrad. The ETD line is a dashed line because it is not currently in the full simulation. The radial dimension scale is broken above 350 mm for display convenience.

Event data model

- Based on plcio.
 - MCParticle
 - SimTrackerHit
 - SimCalorimeterHit
- Even though the data type is same, the collections are separate for different detectors.
- Collection names in output are kept same with Mokka:

SimTrackerHit

- MCParticle
- VXDCollection ⁻
- SITCollection
- TPCCollection
- SETCollection _

Geometry

- The DD4hep is used to construct the detector.
 - Based on Chengdong's version.
 - The compact files and implementation are copied.
- Package: Detector/DetCEPCv4
 - Geometry with VXD only: CepC_v4-onlyVXD.xml (Default)
 - Geometry with Tracker: CepC_v4-onlyTracker.xml
 - VXD: compact/vxd07.xml + src/tracker/VXD04_geo.cpp
- GeoSvc provides the interface to access the DD4hep.
 - dd4hep::Detector* lcdd();
- In detector simulation, a DetElemTool is used to convert the DD4hep geometry to Geant4 geometry.
 - Package: Simulation/DetSimGeom/
 - This design allows the traditional Geant4 geometry construction.

Identifier

- ID for each detector component.
- Keep compatible between Mokka and DD4hep.

- CellID0 and CellID1: 32bit for each
- The bitmap starts from low to high
 1110 000000101 11 00001 high <- low layer(9) system(5)
 Module(8) side(-2: sign value)

const const const	unsigned ILDCellID0::subdet unsigned ILDCellID0::side unsigned ILDCellID0::layer unsigned ILDCellID0::modulo unsigned ILDCellID0::sensor	= = e =	1 2 3	;;
				1
const	<pre>int ILDDetID::NOTUSED =</pre>	0	;	
const	<pre>int ILDDetID::VXD =</pre>	1	;	
	<pre>int ILDDetID::SIT =</pre>			
	<pre>int ILDDetID::FTD =</pre>			
	<pre>int ILDDetID::TPC =</pre>			
	<pre>int ILDDetID::SET =</pre>			
	<pre>int ILDDetID::ETD =</pre>			
		20		
	<pre>int ILDDetID::ECAL_PLUG =</pre>			
		22	;	
	<pre>int ILDDetID::HCAL_RING =</pre>			
	<pre>int ILDDetID::LCAL =</pre>			
	<pre>int ILDDetID::BCAL =</pre>			
	<pre>int ILDDetID::LHCAL =</pre>		;	
	<pre>int ILDDetID::YOKE =</pre>		1	
	<pre>int ILDDetID::COIL =</pre>		;	
	<pre>int ILDDetID::ECAL_ENDCAP=</pre>			
	<pre>int ILDDetID::HCAL_ENDCAP=</pre>			
const	<pre>int ILDDetID::YOKE_ENDCAP=</pre>	31	;	

LCIO/src/cpp/src/UTIL/ILDConf.cc

Physics generator interface

- Implemented as a major algorithm with multiple small GenTools.
 - The major algorithm creates the event object and passes it to GenTools.
 - A GenTool then adds or modifies the MC particle in the event.
- Several GenTools are ready for use.
 - GtGunTool: a particle gun, supporting multiple particles.
 - StdHepRdr: reads StdHep format data.
 - SLCIORdr: reads LCIO format data.
- Configure in the job option file.
 - GtGunTool: Particle name/PDGcode, momentum, direction
 - Readers: Input

Physics list

- Default physics list: "QGSP_BERT"
 - Same as Mokka (Control::PhysicsListName = "QGSP_BERT")
- Can be changed easily by setting
 - detsimalg. PhysicsList = "QGSP_BERT_HP";
- Using Geant4's G4PhysListFactory to instance the real physics list.

```
nlists_hadr = 23;
G4String ss[23] = {
    "FTFP_BERT","FTFP_BERT_TRV","FTFP_BERT_ATL","FTFP_BERT_HP","FTFQGSP_BERT",
    "FTFP_INCLXX","FTFP_INCLXX_HP","FTF_BIC", "LBE","QBBC",
    "QGSP_BERT","QGSP_BERT_HP","QGSP_BIC","QGSP_BIC_HP","QGSP_BIC_AllHP",
    "QGSP_FTFP_BERT","QGSP_INCLXX","QGSP_INCLXX_HP","QGS_BIC",
    "Shielding","ShieldingLEND","ShieldingM","NuBeam"};
```

Sensitive detector

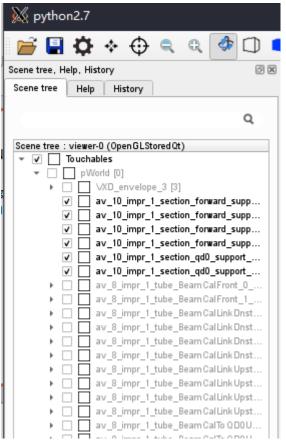
- The DDG4's sensitive detectors are registered automatically.
 - Done in the IDetElemTool::ConstructSDandField.
 - See: Simulation/DetSimGeom/src/AnExampleDetElemTool.cpp
- The volumes marked as sensitive are associated with SD using the "type" name in the compact file.
 - Supporting two types: tracker and calorimeter.

Compact:

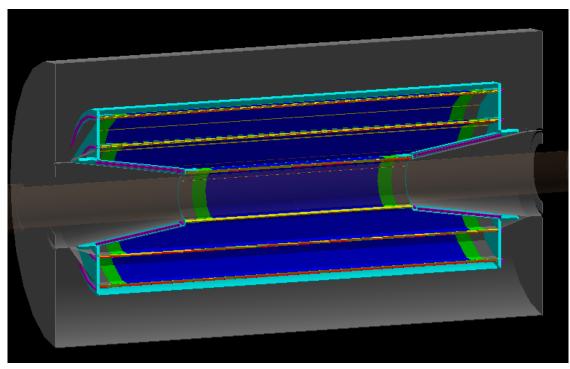
<detector name="VXD" type="VXD04" vis="VXDVis" id="ILDDetID_VXD"
limits="Tracker_limits" readout="VXDCollection" insideTrackingVolume="true">

Logs:	Compact	INFO ++ Converted subdetector:VXD of type VXD04 [tracker]
-		

ام مر
and
13
•


User actions

- Implemented as IAnaElemTool
 - Path: Simulation/DetSimAna
 - The registered tools will be invoked by the Geant4 user actions automatically (Run, Event, Tracking, Stepping Actions).
- ExampleAnaElemTool
 - An example to convert the Geant4's hit objects to plcio's hit objects.
 - All the necessary collections are defined here.


```
DataHandle<plcio::SimTrackerHitCollection> m_trackerCol{"SimTrackerCol",
        Gaudi::DataHandle::Writer, this};
DataHandle<plcio::SimTrackerHitCollection> m_VXDCol{"VXDCollection",
        Gaudi::DataHandle::Writer, this};
DataHandle<plcio::SimTrackerHitCollection> m_FTDCol{"FTDCollection",
        Gaudi::DataHandle::Writer, this};
DataHandle<plcio::SimTrackerHitCollection> m_SITCol{"SITCollection",
        Gaudi::DataHandle::Writer, this};
DataHandle<plcio::SimTrackerHitCollection> m_TPCCol{"TPCCollection",
        Gaudi::DataHandle::Writer, this};
DataHandle<plcio::SimTrackerHitCollection> m_TPCCol{"TPCCollection",
        Gaudi::DataHandle::Writer, this};
```

Visualization

- Using Geant4's Qt-based UI.
- Need to enable vis in DetSimAlg.

Job option

- Job option is a python script.
- Users need to copy the standard one.
- Use gaudirun.py to run it. (It can be improved in the future.)
 - ./run gaudirun.py '\$EXAMPLESROOT/options/tut_detsim.py'

Job option (Event Data & GeoSvc)

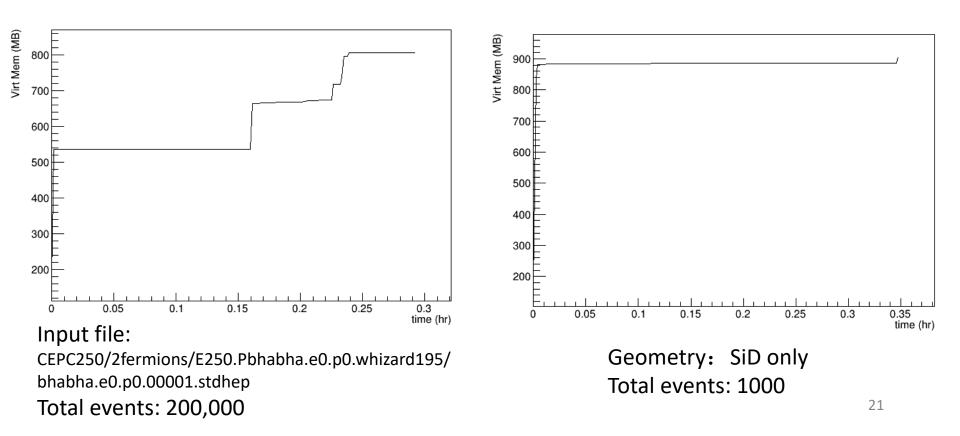
```
# Event Data Svc
from Configurables import CEPCDataSvc
dsvc = CEPCDataSvc("EventDataSvc")
# Geometry Svc
# geometry option = "CepC v4-onlyTracker.xml"
geometry option = "CepC v4-onlyVXD.xml"
if not os.getenv("DETCEPCV4ROOT"):
  print("Can't find the geometry. Please setup envvar DETCEPCV4R00T." )
  sys.exit(-1)
geometry_path = os.path.join(os.getenv("DETCEPCV4ROOT"), "compact", geometry_option)
if not os.path.exists(geometry path):
  print("Can't find the compact geometry file: %s"%geometry path)
  sys.exit(-1)
from Configurables import GeoSvc
geosvc = GeoSvc("GeoSvc")
geosvc.compact = geometry_path <= Compact file</pre>
```

The geometry compact file under DetCEPCv4 is loaded.

Job option (Physics Generator)

Job option (Detector simulation)

```
# Detector Simulation
from Configurables import DetSimSvc
detsimsvc = DetSimSvc("DetSimSvc")
# from Configurables import ExampleAnaElemTool
# example anatool = ExampleAnaElemTool("ExampleAnaElemTool")
from Configurables import DetSimAlg
detsimalg = DetSimAlg("DetSimAlg")
                             <= If need visualization, uncomment it
 detsimalg.VisMacs = ["vis.mac"]
detsimalg.RunCmds = [
                             <= Part of Geant4 macros are support
    "/tracking/verbose 1",
detsimalg.AnaElems = [
   # example anatool.name()
                             <= User actions
   "ExampleAnaElemTool"
detsimalg.RootDetElem = "WorldDetElemTool"
                                                    <= Geometry
from Configurables import AnExampleDetElemTool
example_dettool = AnExampleDetElemTool("AnExampleDetElemTool")
```


Job option (I/O & AppMgr)

```
# POD I/O
from Configurables import PodioOutput
out = PodioOutput("outputalg")
out.filename = "test-detsim10.root" <= Output file name</pre>
out.outputCommands = ["keep *"]
# ApplicationMgr
from Configurables import ApplicationMgr
ApplicationMgr( TopAlg = [genalg, detsimalg, out],
            EvtSel = 'NONE',
             EvtMax = 10, <= Total events
```

```
ExtSvc = [rndmengine, dsvc, geosvc],
```

Software performance

- Measure two cases
 - Physics generator only
 - Physics generator + detector simulation

Summary and plans

- A simulation framework prototype is developed. Keep compatible with Mokka.
 - Integration: based on Gaudi and DD4hep.
 - EDM&ROOTIO: PODIO and plcio
 - Geometry: DD4hep. "Tracker" is ready in the simulation framework.
 - Physics generator: GenTool based. Particle gun and StdHep reader.
 - Transportation: Geant4. User actions are implemented as tools.
- Plans:
 - Validation between Mokka and our prototype.
 - Full data processing chain: integration with digitizer simulation and reconstruction.
 - Fast simulation support in the framework.

Git Repo: http://cepcgit.ihep.ac.cn/cepc-prototype/CEPCSW

Thank you!