

#### 张黎明 (清华大学) 2019.12.14

1



Source of CPV in SM

CPV could happen when







Wolfenstein parametrization (1983)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} |V_{ud}| & |V_{us}| & e^{-i\gamma} |V_{ub}| \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ e^{-i\beta} |V_{td}| - e^{-i\beta_s} |V_{ts}| & |V_{tb}| \end{pmatrix} + O(\lambda^5)$$

 $\lambda \approx 0.23$ 

# HCDPrecision measurements of CPV and<br/>rare decays: why important?

 Instead of searching for NP particles directly produced, look for their indirect effects to low energy processes (e.g. b-hadron decays)



- In presence of sizeable SM contributions, NP effects might be hidden => need precision measurements
- NP may be more visible in these SM suppressed processes



- Studying CPV processes => two fundamental tasks can be accomplished
  - Identify new symmetries (and their breaking) beyond the SM
  - Probe mass scales not accessible directly at nowadays colliders

#### 张黎明



Weak states mix via box diagram: flavour oscillation

$$|B_q\rangle = |\overline{b}q\rangle$$

$$q = d, s$$

$$\left|\overline{B}_{q}\right\rangle = \left|b\overline{q}\right\rangle$$

Mass eigenstates  $\Delta m_q = m_{\rm H} - m_{\rm L}, \Delta \Gamma_q = \Gamma_{\rm H} - \Gamma_{\rm L}$ 

#### **CPV** observables

Interference between direct decay and decay via mixing →

•Mixing-induced CPV:  $\phi_s$ ,  $\phi_d = 2\beta$ 

 $\phi_q$  and  $\Delta m_q$  are very sensitive to NP in mixing

 $|B_L^q\rangle = p |B_q\rangle + q |\overline{B}_q\rangle$  $|B_H^q\rangle = p |B_q\rangle - q |\overline{B}_q\rangle$ 



## $\phi_s$ : a crucial goal of LHCb

10% of b-hadrons in pp collisions are  $B_s^0$  mesons!

Measuring  $B_s^0$  CPV is LHC(b) territory.



For  $b \to c\bar{c}s$  decay such as  $B_s^0 \to J/\psi h^+ h^ (h = K, \pi)$  $\phi_s = -\arg(\eta_f \lambda); \ \lambda = \frac{q}{p} \frac{\bar{A}_{\bar{f}_{CP}}}{A_{f_{CP}}}$ 

 $\phi_s$  is precisely predicted in SM

 $\phi_s^{\text{SM}} = -2\beta_s = -37 \pm 1 \text{ mrad} = (2.11 \pm 0.06)^{\circ}$ (up to small correction for penguins)

 $\phi_s$  is very sensitive to NP in mixing  $\phi_s = \phi_s^{SM} + \Delta \phi^{NP}$ 



### **Characle Strategy of** $B_s^0 \rightarrow J/\psi\phi$

• Theoretical time-dependent CP asymmetry

$$A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} = \eta_f \sin\phi_s \sin(\Delta m_s t)$$

• From flavour tagged time-dependent angular analysis

$$A_{\rm CP} \approx (1 - 2w) e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \sin \phi_s \sin(\Delta m_s t)$$

Requirements

- > Good performance to tag initial flavour of  $B_s^0$
- Solution to resolve fast  $B_s^0$  oscillation and determine  $\Delta m_s$
- Angular analysis to separate
   CP eigenstates





## **Hech** Decay time resolution



Impact of decay time resolution,  $\Delta m_s \approx 17.7 \text{ ps}^{-1}$ 

► If  $\sigma_t = 45$  fs, dilution factor  $exp(-\Delta m_s^2 \sigma_t^2/2) \approx 0.73$  (improved 5-10% in run3)

▶ If  $\sigma_t$  = 90 fs, dilution factor exp(- $\Delta m_s^2 \sigma_t^2/2$ ) ≈ 0.28 张黎明



#### $\Delta m_{s/d}$ measurements

$$B_s^0 \to D_s^- \pi^+$$
 (1 fb<sup>-1</sup>)

$$B^0 \to D^{(*)-} \mu^+ \nu$$
 (3 fb<sup>-1</sup>)

LHCb, New J.Phys. 15 (2015) 053201

LHCb, EPJC 76 (2016) 412



SM:  $\Delta m_s = 16.3 \pm 1.1 \text{ ps}^{-1}$ 

SM:  $\Delta m_d = 0.566^{+0.035}_{-0.043} \text{ ps}^{-1}$ 

SM predictions suffer large uncertainties in Lattice QCD calculation of hadronic parameters (theory inputs?)





#### **Tagging the initial flavour**

Opposite side (OS): using charges of decay products of the other B hadron LHCb, EPJC 72 (2012) 2022

Same side (SS): using charges of particles produced in association with the signal B LHCb, JINST 11 (2016) P05010





Kevin Heinicke

#### gitlab.cern.ch/kheinick/ft-contour-plot





# Time-dependent angular analysis of $B_s^0 \rightarrow J/\psi\phi$



# Time-dependent amplitude analysis of $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

- Simultaneous fit  $m_{\pi\pi}$  to separate  $\pi\pi$  resonances [LZ,SS, PLB 719 (2013) 383]
- Better sensitivity per # of signal
  - Final state is almost pure CP-odd (>97%)





## **Recent results**

5 fb<sup>-1</sup>

 $B_s^0 \to J/\psi K^+ K^-$  [EPJC 79 (2019) 706]

$$\begin{split} \phi_s &= -0.080 \pm 0.032 \text{ rad} \\ |\lambda| &= 0.993 \pm 0.013 \\ \Gamma_s &= 0.6570 \pm 0.0023 \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0784 \pm 0.0062 \text{ ps}^{-1} \end{split}$$

 $B_s^0 \to J/\psi \pi^+ \pi^-$  [PLB 797(2019) 134789]

$$\begin{split} \phi_s &= 0.002 \pm 0.044 \pm 0.012 \text{ rad} \\ &|\lambda| = 0.949 \pm 0.036 \pm 0.019 \\ \Gamma_H - \Gamma_{B^0} &= -0.050 \pm 0.004 \pm 0.004 \text{ ps}^{-1} \end{split}$$

Combination of all LHCb (Run I+II) results

#### Statistics dominated

[EPJC 79 (2019) 706]

 $\phi_s = -0.041 \pm 0.025 \text{ rad}$  $|\lambda| = 0.993 \pm 0.010$  $\Gamma_s = -0.6562 \pm 0.0021 \text{ ps}^{-1}$  $\Delta\Gamma_s = 0.0816 \pm 0.0048 \text{ ps}^{-1}$ 

3 fb<sup>-1</sup>  

$$\psi(2S)\phi$$
  
 $D_{s}^{+}D_{s}^{-}$   
 $J/\psi K^{+}K^{-}(\text{non-}\phi)$   
 $J/\psi \pi^{+}\pi^{-}$   
5 fb<sup>-1</sup>  
 $J/\psi\phi$   
 $-0.5$   
 $0$   
 $0$   
 $0$   
 $0$   
 $0.5$   
 $0$   
 $0$   
 $0.5$   
 $\phi_{s}^{-}[\text{rad}]$ 

张黎明



# World Average



# **B Penguin pollution**

Small pollution to SM predictions of  $\phi_d$  and  $\phi_s$  must be taken under control  $h \ge a\overline{a}$ 



• Use penguin enhanced processes  $b \rightarrow c \overline{c} d$ 



## Penguin pollution in $\phi_s$



Assuming perfect SU(3) flavor symmetry:  $a'_i = a_i$ ,  $\theta'_i = \theta_i$ SU(3) breaking for a' =a &  $\theta$  ' =  $\theta$  need to considered





张黎明

## $B_d \rightarrow J/\psi \rho^0$

- P2VV decay to control penguin in  $\phi_s$
- Time-dependent amplitude fit to B<sub>d</sub>→J/ψπ<sup>+</sup>π<sup>-</sup>

$$2\beta^{J/\psi\rho} - 2\beta^{J/\psi K_{\rm S}^0} = \left(-0.9 \pm 9.7^{+2.8}_{-6.3}\right)^{-6.3}$$

Penguin pollution in  $\phi_s$  is small

```
[-18, +18] mrad @68.3% CL
```

for maximum breaking in phase and 0.5<a/a'<1.5

Smaller than  $\phi_s$  experimental uncertainty ±21 mrad



<del>|LHCb. PLB 742 (2015) 38-4</del>9



## **CPV in loop decays**

b $\rightarrow$ s penguin decay. Weak phase I $\phi$ I<0.02 in SM. Can be affected by NP in decay and/or mixing.



 $\phi = -0.073 \pm 0.115 \pm 0.027 \text{ rad}$  5fb<sup>-1</sup> LHCb, arXiv:1907.10003



$$\label{eq:phi} \begin{split} \varphi &= -0.10 \pm 0.13 \pm 0.14 \ rad \\ \mbox{LHCb}, \ \mbox{JHEP 03 (2018) 140} \end{split}$$





### $\sin 2\beta$ from $B^0 \rightarrow [c\overline{c}]K_s^0$

Time dependent CP asymmetry

$$A_{[c\bar{c}]K_s^0}(t) = \frac{\bar{\Gamma}_{[c\bar{c}]K_s^0}(t) - \Gamma_{[c\bar{c}]K_s^0}(t)}{\bar{\Gamma}_{[c\bar{c}]K_s^0}(t) - \Gamma_{[c\bar{c}]K_s^0}(t)}$$
$$= \mathbf{S} \cdot \sin(\Delta m_d t) - \mathbf{C} \cdot \cos(\Delta m_d t)$$

$$S = \frac{2Im(\lambda)}{1+|\lambda|^2} = \sqrt{1-C^2}\sin(2\beta) \approx \sin(2\beta)$$
$$C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \approx 0$$



- Long term puzzle: ~2σ tension between indirect fit in SM and B-factory measurements
  - $\sin(2\beta)^{\text{SM}} = 0.738^{+0.027}_{-0.030}$  [CKMfitter'18]
  - $\sin(2\beta)^{B-factory} = 0.679 \pm 0.020$  [HFLAV'17]



#### $\sin 2\beta \operatorname{from} B^0 \to [c\overline{c}]K_s^0$

#### LHCb precision approaches that of B factories [Run-I results]

| cī                         | Tagged<br>yields | Mass<br>resolution | εD <sup>2</sup> | Ref.                     | $\overline{\overline{B}}^{0})$ |
|----------------------------|------------------|--------------------|-----------------|--------------------------|--------------------------------|
| $J/\psi \to \mu^+ \mu^-$   | 41,560           | 7 MeV              | 3.02%           | PRL 115 (2015)<br>031601 | $\frac{N}{N(}$                 |
| $J/\psi \to e^+e^-$        | 10,630           | 29 MeV             | 5.93%           | JHEP 11 (2017)           |                                |
| $\psi(2S) \to \mu^+ \mu^-$ | 7,970            | 7 MeV              | 3.42%           | 170                      | $(B^0)$                        |

#### Precision will be further improved with Run-2 data

| Measurements  | sin2β                     |  |  |
|---------------|---------------------------|--|--|
| Indirect fit  | $0.738^{+0.027}_{-0.030}$ |  |  |
| B-factories   | $0.679 \pm 0.020$         |  |  |
| LHCb          | $0.760 \pm 0.034$         |  |  |
| World average | $0.699 \pm 0.017$         |  |  |







张黎明

### **LHCb** Semi-leptonic asymmetries

Semi-leptonic asymmetry  $a_{sl}^q$  quantifies *CPV* in mixing.

 $a_{sl}^q$  is precisely predicted to be tiny in SM: ~ $O(10^{-4})$ , can be enhanced by NP

$$a_{\rm sl} = \frac{N(\bar{B} \to B \to f) - N(B \to \bar{B} \to \bar{f})}{N(\bar{B} \to B \to f) + N(B \to \bar{B} \to \bar{f})}$$



(1) Measure time-integrated raw asymmetry

$$A_{\rm raw} = \frac{N(D_s^-\mu^+) - N(D_s^+\mu^-)}{N(D_s^-\mu^+) + N(D_s^+\mu^-)}$$

(2) Correct for detection asymmetry and background effect

$$a_{\rm sl}^s = \frac{2}{1 - f_{\rm bkg}} (A_{\rm raw} - A_{\rm det} - f_{\rm bkg} A_{\rm bkg})$$

张黎明 For  $B_d$ , also correct for production asymmetry



#### LHCb results of $a_{sl}^q$



## **HCb** Tagging performance in run-3

- Degradation of tagging because pipe-up introduce PV misassociation?
- Improved tagging would benefit all time-dependent analyses



Figure 3.2: Effective tagging efficiency of OS and SS kaon taggers, and their combination, (left) in bins of pile-up vertices and (right) in bins of track multiplicity. These results are obtained from Upgrade I simulation of  $B_s^0 \rightarrow D_s^- \pi^+$  decays. The OS performances correspond to those obtained from combination of the individual OS taggers.



## Prospects





## Prospects



- $\phi_s$  would be statistically limited
- Expect to have with 300/fb
  - $\sigma^{\text{stat}} \sim 4 \text{mrad} \ (B_s^0 \rightarrow J/\psi \phi)$
  - $\sigma^{\text{stat}} \sim 3 \text{mrad}$  (total)

CERN-LHCC-2018-027 arXiv:1808.08865

Table 3.1: Statistical sensitivity on  $\phi_s^{s\bar{s}s}$  and  $\phi_s^{d\bar{d}s}$ .

| Deepy mode                                   | $\sigma(\text{stat.}) \text{ [rad]}$ |                      |                      |                       |
|----------------------------------------------|--------------------------------------|----------------------|----------------------|-----------------------|
| Decay mode                                   | $3 \text{ fb}^{-1}$                  | $23 \text{ fb}^{-1}$ | $50 \text{ fb}^{-1}$ | $300 \text{ fb}^{-1}$ |
| $B_s^0 	o \phi \phi$                         | 0.154                                | 0.039                | 0.026                | 0.011                 |
| $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ (inclusive) | 0.129                                | 0.033                | 0.022                | 0.009                 |
| $B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0$ | —                                    | 0.127                | 0.086                | 0.035                 |



## LHCb

# **Summary and Plan**

- Upgrade of LHCb will enable a wide range of flavour observables determined with unprecedented precision
  - Expect to 7x more data (14x more hadronic events) by 2029
  - Could have another factor of 6 increase from Upgrade II
- LHCb Chinese group plan on  $\phi_s$
- Should put 1-2 students on improving Tagging
- $\phi_s$  from  $b \to c\overline{c}s$ 
  - Should concentrate on channels that give most precise measurements (h<sup>+</sup>h<sup>-</sup>)
  - Update the penguin control
- $\phi_s$  from  $b \rightarrow sq\overline{q}$  (q = s or d) loops
  - should continue on  $B_s^0 \to \phi \phi$
  - Explore more possible modes (need theory inputs)?





# Backup





### The Unitarity triangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- *Sides* are measured with decay rates
- *Angles* are measured with CP asymmetries

UT defined by two parameters only  $\rightarrow$  Can be overconstrained

Inconsistent measurements could indicate new physics





### **Systematics on** $2\beta^{J/\psi\rho}$

|                              | · i 、 ·          |                  |                |
|------------------------------|------------------|------------------|----------------|
| Fit                          | Fit 1            |                  |                |
| Sources                      | $\overline{ ho}$ | other – $\rho$   | $ ho_0$        |
| Resonance model              | +1.85<br>5.94    | +0.51<br>-0.33   | +1.99<br>-6.56 |
| Resonance parameters         | $\pm 1.21$       | ±0.43            | $\pm 1.35$     |
| Mass and angular acceptance  | $\pm 0.27$       | $\pm 0.05$       | $\pm 0.28$     |
| Angular acc. correlation     | $\pm 0.22$       | $\pm 0.03$       | $\pm 0.22$     |
| Decay time acceptance        | $\pm 0.05$       | $\pm 0.02$       | $\pm 0.06$     |
| Bkg. mass and angular PDF    | $\pm 0.43$       | $\pm 0.09$       | $\pm 0.47$     |
| Bkg. decay time PDF          | $\pm 0.14$       | $\pm 0.05$       | $\pm 0.12$     |
| Bkg. model                   | $\pm 0.49$       | $\pm 0.23$       | $\pm 0.15$     |
| Flavor Tagging               | $\pm 1.46$       | $\pm 0.03$       | $\pm 1.66$     |
| Production asymmetry         | $\pm 0.17$       | $\pm 0.50$       | $\pm 0.28$     |
| Total systematic uncertainty | $+2.8 \\ -6.3$   | $^{+0.9}_{-0.8}$ | $+3.0 \\ -6.9$ |
| Statistical uncertainty      | $\pm 9.6$        | ±3.6             | ±10.2          |



## Prospects



| Observable                                       | Current LHCb                     | LHCb 2025            | Belle II      | Upgrade II           |
|--------------------------------------------------|----------------------------------|----------------------|---------------|----------------------|
| CKM tests                                        |                                  |                      |               |                      |
| $\gamma$ , with $B_s^0 \to D_s^+ K^-$            | $\binom{+17}{-22}^{\circ}$ [136] | $4^{\circ}$          | _             | 1°                   |
| $\gamma$ , all modes                             | $(^{+5.0}_{-5.8})^{\circ}$ [167] | 1.5°                 | $1.5^{\circ}$ | 0.35°                |
| $\sin 2\beta$ , with $B^0 \to J/\psi K_s^0$      | 0.04 609                         | 0.011                | 0.005         | 0.003                |
| $\phi_s$ , with $B_s^0 \to J/\psi\phi$           | 49  mrad [44]                    | $14 \mathrm{\ mrad}$ | —             | $4 \mathrm{mrad}$    |
| $\phi_s$ , with $B_s^0 \to D_s^+ D_s^-$          | 170  mrad  [49]                  | $35 \mathrm{\ mrad}$ | —             | $9 \mathrm{\ mrad}$  |
| $\phi_s^{s\bar{s}s}$ , with $B_s^0 \to \phi\phi$ | $154 \mathrm{mrad} [94]$         | $39 \mathrm{\ mrad}$ | —             | $11 \mathrm{\ mrad}$ |
| $a_{\rm sl}^s$                                   | $33 \times 10^{-4}$ [211]        | $10 \times 10^{-4}$  | —             | $3 \times 10^{-4}$   |
| $ V_{ub} / V_{cb} $                              | 6% [201]                         | 3%                   | 1%            | 1%                   |

#### CERN-LHCC-2018-027 arXiv:1808.08865

